Riemannian Interior Point Methods for Constrained Optimization on Manifolds

被引:0
作者
Zhijian Lai
Akiko Yoshise
机构
[1] University of Tsukuba,
来源
Journal of Optimization Theory and Applications | 2024年 / 201卷
关键词
Riemannian manifolds; Riemannian optimization; Nonlinear optimization; Interior point method; 65K05; 90C48;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the classical primal-dual interior point method from the Euclidean setting to the Riemannian one. Our method, named the Riemannian interior point method, is for solving Riemannian constrained optimization problems. We establish its local superlinear and quadratic convergence under the standard assumptions. Moreover, we show its global convergence when it is combined with a classical line search. Our method is a generalization of the classical framework of primal-dual interior point methods for nonlinear nonconvex programming. Numerical experiments show the stability and efficiency of our method.
引用
收藏
页码:433 / 469
页数:36
相关论文
共 50 条
  • [41] A proximal bundle algorithm for nonsmooth optimization on Riemannian manifolds
    Hoseini Monjezi, Najmeh
    Nobakhtian, Soghra
    Pouryayevali, Mohamad Reza
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (01) : 293 - 325
  • [42] Bayesian Optimization Meets Riemannian Manifolds in Robot Learning
    Jaquier, Noemie
    Rozo, Leonel
    Calinon, Sylvain
    Burger, Mathias
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [43] Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels
    Jayasumana, Sadeep
    Hartley, Richard
    Salzmann, Mathieu
    Li, Hongdong
    Harandi, Mehrtash
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (12) : 2464 - 2477
  • [44] Applications of proximal calculus to fixed point theory on Riemannian manifolds
    Azagra, Daniel
    Ferrera, Juan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (01) : 154 - 174
  • [45] An extension for identifying search directions for interior-point methods in linear optimization
    Kheirfam, Behrouz
    Nasrollahi, Afsaneh
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (01)
  • [46] Learning to Optimize on Riemannian Manifolds
    Gao, Zhi
    Wu, Yuwei
    Fan, Xiaomeng
    Harandi, Mehrtash
    Jia, Yunde
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5935 - 5952
  • [47] Penalized interior point approach for constrained nonlinear programming
    陆文婷
    姚奕荣
    张连生
    Advances in Manufacturing, 2009, (03) : 248 - 254
  • [48] Interior Point Algorithms in Linear Optimization
    Zorkaltsev V.I.
    Mokryi I.V.
    Zorkaltsev, V.I. (zork@isem.irk.ru), 2018, Pleiades journals (12) : 191 - 199
  • [49] Unconstrained Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds
    Bento, G. C.
    Ferreira, O. P.
    Oliveira, P. R.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) : 88 - 107
  • [50] EXISTENCE OF OPTIMAL PAIRS FOR OPTIMAL CONTROL PROBLEMS WITH STATES CONSTRAINED TO RIEMANNIAN MANIFOLDS
    Deng, Li
    Zhang, Xu
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (04) : 2098 - 2114