The Eta Invariant of Pin Manifolds with Cyclic Fundamental Groups

被引:0
作者
Peter B. Gilkey
机构
[1] University of Oregon,Mathematics Department
关键词
Eta invariant; pin manifolds; equivariant bordism;
D O I
10.1023/A:1004629725347
中图分类号
学科分类号
摘要
Let ℓ= 2ν > 1. Let M be an orientable manifold of odd dimension m with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\pi _1 (M) = \mathbb{Z}_\ell $$ \end{document} whose universal cover \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde M$$ \end{document} is spin. We define a fixed point free action of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}_{2\ell } $$ \end{document} on the product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde M \times \tilde M{\text{ and let }}N: = \tilde M \times \tilde M/\mathbb{Z}_{2\ell } ;{\text{ }}N\left( M \right)$$ \end{document} is non orientable and admits a natural pin- structure. We express the eta invariant of N(M) in terms of the eta invariant of M and show the map M → N(M) extends to a map of suitably chosen equivariant connective K-theory groups. Let X be a non orientable manifold with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\pi _1 (X) = \mathbb{Z}_{2\ell } $$ \end{document} of even dimension m ≥ 6 whose universal cover is spin. We show that if X admits a metric of positive scalar curvature, then the moduli space of all metrics of positive scalar curvature on X has an infinite number of arc components. If m \n= 2 mod 4 and if w2(X) = 0, we show X admits a metric of positive scalar curvature if and only if the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat A$$ \end{document} genus of the universal cover \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde X$$ \end{document} vanishes; this establishes the Gromov-Lawson conjecture in this special case.
引用
收藏
页码:139 / 170
页数:31
相关论文
共 49 条
  • [1] Atiyah M. F.(1964)Clifford modules Topology 3 3-38
  • [2] Bott R.(1975)Spectral asymmetry and Riemannian geometry I, II, III Math. Proc. Cambr. Phil. Soc. 77 43-69
  • [3] Shapiro R.(1989)The complex bordism of groups with periodic cohomology Trans. AMS 316 673-687
  • [4] Atiyah M. F.(1987)The eta invariant, Pin Pacific Journal 128 1-24
  • [5] Patodi V. K.(1995) bordism, and equivariant Spin Math. Ann. 302 507-517
  • [6] Singer I. M.(1996) bordism for cyclic 2-groups Canadian Math Journal 48 64-80
  • [7] Bahri A.(1997)The eta invariant and metrics of positive scalar curvature Houston Math J. 23 143-160
  • [8] Bendersky M.(1997)Metrics of positive scalar curvature on spherical space forms Journal Differential Geometry 46 374-405
  • [9] Davis D.(1992)The Gromov-Lawson-Rosenberg conjecture: the twisted case J. Functional Analysis 108 47-87
  • [10] Gilkey P.(1978)The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology Indiana Univ. Math. J. 27 889-918