Condensates and pressure of two-flavor chiral perturbation theory at nonzero isospin and temperature

被引:0
作者
Prabal Adhikari
Jens O. Andersen
Martin A. Mojahed
机构
[1] St. Olaf College,Physics Department, Faculty of Natural Sciences and Mathematics
[2] Norwegian University of Science and Technology,Department of Physics
来源
The European Physical Journal C | 2021年 / 81卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider two-flavor chiral perturbation theory (χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT) at finite isospin chemical potential μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and finite temperature T. We calculate the effective potential and the quark and pion condensates as functions of T and μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} to next-to-leading order in the low-energy expansion in the presence of a pionic source. We map out the phase diagram in the μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document}–T plane. Numerically, we find that the transition to the pion-condensed phase is second order in the region of validity of χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT, which is in agreement with model calculations and lattice simulations. Finally, we calculate the pressure to two-loop order in the symmetric phase for nonzero μI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _I$$\end{document} and find that χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT seems to be converging very well.
引用
收藏
相关论文
共 139 条
  • [1] Alford MG(2008)undefined Rev. Mod. Phys. 80 1455-undefined
  • [2] Schmitt A(2011)undefined Rep. Prog. Phys. 74 014001-undefined
  • [3] Rajagopal K(2007)undefined Nucl. Phys. A 796 83-undefined
  • [4] Schäfer T(1979)undefined Physica A 96 327-undefined
  • [5] Fukushima K(1984)undefined Ann. Phys. 158 142-undefined
  • [6] Hatsuda T(1985)undefined Nucl. Phys. B 250 465-undefined
  • [7] McLerran L(1999)undefined JHEP 02 020-undefined
  • [8] Pisarski RD(2002)undefined Phys. Rev. D 66 014508-undefined
  • [9] Weinberg S(2002)undefined Phys. Rev. D 66 034505-undefined
  • [10] Gasser J(2004)undefined Phys. Rev. D 70 094501-undefined