Differential and spatial expression meta-analysis of genes identified in genome-wide association studies of depression

被引:0
|
作者
Wennie Wu
Derek Howard
Etienne Sibille
Leon French
机构
[1] University of Toronto,Institute for Medical Science
[2] Campbell Family Mental Health Research Institute,Department of Psychiatry, Faculty of Medicine
[3] Centre for Addiction and Mental Health,Department of Pharmacology and Toxicology
[4] Krembil Centre for Neuroinformatics,undefined
[5] Centre for Addiction and Mental Health,undefined
[6] University of Toronto,undefined
[7] University of Toronto,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Major depressive disorder (MDD) is the most prevalent psychiatric disorder worldwide and affects individuals of all ages. It causes significant psychosocial impairments and is a major cause of disability. A recent consortium study identified 102 genetic variants and 269 genes associated with depression. To provide targets for future depression research, we prioritized these recently identified genes using expression data. We examined the differential expression of these genes in three studies that profiled gene expression of MDD cases and controls across multiple brain regions. In addition, we integrated anatomical expression information to determine which brain regions and transcriptomic cell types highly express the candidate genes. We highlight 12 of the 269 genes with the most consistent differential expression: MANEA, UBE2M, CKB, ITPR3, SPRY2, SAMD5, TMEM106B, ZC3H7B, LST1, ASXL3, ZNF184 and HSPA1A. The majority of these top genes were found to have sex-specific differential expression. We place greater emphasis on ZNF184 as it is the top gene in a more conservative analysis of the 269. Specifically, the differential expression of ZNF184 was strongest in subcortical regions in males and females. Anatomically, our results suggest the importance of the dorsal lateral geniculate nucleus, cholinergic, monoaminergic and enteric neurons. These findings provide a guide for targeted experiments to advance our understanding of the genetic underpinnings of depression.
引用
收藏
相关论文
共 50 条
  • [41] Meta-analysis of genome-wide association studies for litter size in sheep
    Gholizadeh, Mohsen
    Esmaeili-Fard, Seyed Mehdi
    THERIOGENOLOGY, 2022, 180 : 103 - 112
  • [42] Erratum: Meta-analysis of genome-wide association studies of anxiety disorders
    T Otowa
    K Hek
    M Lee
    E M Byrne
    S S Mirza
    M G Nivard
    T Bigdeli
    S H Aggen
    D Adkins
    A Wolen
    A Fanous
    M C Keller
    E Castelao
    Z Kutalik
    S V der Auwera
    G Homuth
    M Nauck
    A Teumer
    Y Milaneschi
    J-J Hottenga
    N Direk
    A Hofman
    A Uitterlinden
    C L Mulder
    A K Henders
    S E Medland
    S Gordon
    A C Heath
    P A F Madden
    M L Pergadia
    P J van der Most
    I M Nolte
    F V A van Oort
    C A Hartman
    A J Oldehinkel
    M Preisig
    H J Grabe
    C M Middeldorp
    B W J H Penninx
    D Boomsma
    N G Martin
    G Montgomery
    B S Maher
    E J van den Oord
    N R Wray
    H Tiemeier
    J M Hettema
    Molecular Psychiatry, 2016, 21 : 1485 - 1485
  • [43] Meta-analysis of genome-wide association studies on ADHD: A dimensional approach
    Groen-Blokhuis, Maria
    Whitehouse, Andrew
    Tiemeier, Henning
    Pappa, Irene
    Jugessur, Astanand
    McGue, Matthew
    Hinney, Anke
    St Pourcain, Beate
    Tiesler, Carla
    Trzaskowski, Maciej
    Bustamante, Mariona
    Middeldorp, Christel
    Boomsma, Dorret
    BEHAVIOR GENETICS, 2013, 43 (06) : 520 - 521
  • [44] The Use of Imputed Values in the Meta-Analysis of Genome-Wide Association Studies
    Jiao, Shuo
    Hsu, Li
    Hutter, Carolyn M.
    Peters, Ulrike
    GENETIC EPIDEMIOLOGY, 2011, 35 (07) : 597 - 605
  • [45] A meta-analysis of genome-wide association studies of epigenetic age acceleration
    Gibson, Jude
    Russ, Tom C.
    Clarke, Toni-Kim
    Howard, David M.
    Hillary, Robert F.
    Evans, Kathryn L.
    Walker, Rosie M.
    Bermingham, Mairead L.
    Morris, Stewart W.
    Campbell, Archie
    Hayward, Caroline
    Murray, Alison D.
    Porteous, David J.
    Horvath, Steve
    Lu, Ake T.
    McIntosh, Andrew M.
    Whalley, Heather C.
    Marioni, Riccardo E.
    PLOS GENETICS, 2019, 15 (11):
  • [46] Coronary ARtery DIsease Genome-wide Replication And Meta-Analysis (CARDIoGRAM) - Design of a prospective meta-analysis of 14 genome-wide association studies
    Koenig, Inke R.
    Thompson, John R.
    Preuss, Michael
    Assimes, Themistocles L.
    Blankenberg, Stefan
    Boerwinkle, Eric
    Cupples, Adrienne
    Epstein, Stephen
    Hall, Alistair
    Hengstenberg, Christian
    Kathiresan, Sekar
    Laaksonen, Reijo
    Maerz, Winfried
    McPherson, Ruth
    O'Donnell, Christopher J.
    Quertermous, Thomas
    Rader, Daniel
    Reilly, Mureclach
    Roberts, Robert
    Stewart, Alex
    Thorsteinsdottir, Unnur
    Ziegler, Andreas
    Erdmann, Jeanette
    Samani, Nilesh J.
    Schunkert, Heribert
    GENETIC EPIDEMIOLOGY, 2009, 33 (08) : 784 - 785
  • [47] Comparison of Meta-analysis and Mega-analysis for Genome-wide Association Studies
    Bae, Harold
    Gurinovich, Anastasia
    Song, Zeyuan
    Leshchyk, Anastasia
    Li, Mengze
    Giuliani, Cristina
    Nygaard, Marianne
    Sebastiani, Paola
    GENETIC EPIDEMIOLOGY, 2022, 46 (07) : 478 - 478
  • [48] CORONARY ARTERY DISEASE GENOME-WIDE REPLICATION AND META-ANALYSIS (CARDIOGRAM) - DESIGN OF A PROSPECTIVE META-ANALYSIS OF 14 GENOME-WIDE ASSOCIATION STUDIES
    Erdmann, J.
    ATHEROSCLEROSIS SUPPLEMENTS, 2010, 11 (02) : 38 - 38
  • [49] COMBINED GENOME-WIDE ASSOCIATION AND GENE-EXPRESSION META-ANALYSIS IDENTIFIES NOVEL PSORIASIS GENES
    Saeed, Mohammad
    ANNALS OF THE RHEUMATIC DISEASES, 2019, 78 : 1474 - 1475
  • [50] Novel Parkinson's Disease Risk Loci Identified Through a Meta-Analysis of Genome-Wide Association Studies
    Liu, Zhenhua
    Tang, Beisha
    MOVEMENT DISORDERS, 2018, 33 (01) : 74 - 74