Kansa-RBF algorithms for elliptic problems in regular polygonal domains

被引:0
作者
Andreas Karageorghis
Malgorzata A. Jankowska
C. S. Chen
机构
[1] University of Cyprus,Department of Mathematics and Statistics
[2] Poznan University of Technology,Institute of Applied Mechanics, Faculty of Mechanical Engineering and Management
[3] University of Southern Mississippi,Department of Mathematics
[4] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
Numerical Algorithms | 2018年 / 79卷
关键词
Kansa method; Radial basis functions; Poisson equation; Biharmonic equation; Cauchy-Navier equations; Matrix decomposition algorithms; Primary 65N35; Secondary 65N22;
D O I
暂无
中图分类号
学科分类号
摘要
We propose matrix decomposition algorithms for the efficient solution of the linear systems arising from Kansa radial basis function discretizations of elliptic boundary value problems in regular polygonal domains. These algorithms exploit the symmetry of the domains of the problems under consideration which lead to coefficient matrices possessing block circulant structures. In particular, we consider the Poisson equation, the inhomogeneous biharmonic equation, and the inhomogeneous Cauchy-Navier equations of elasticity. Numerical examples demonstrating the applicability of the proposed algorithms are presented.
引用
收藏
页码:399 / 421
页数:22
相关论文
共 50 条
[1]  
Bialecki B(2011)Matrix decomposition algorithms for elliptic boundary value problems: a survey Numer. Algorithms 56 253-295
[2]  
Fairweather G(2001)A new class of radial basis functions with compact support Math. Comp. 70 307-318
[3]  
Karageorghis A(2012)Multiquadric and its shape parameter—a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation Eng. Anal. Bound. Elem. 36 220-239
[4]  
Buhmann MD(2002)Newton iteration with multiquadrics for the solution of nonlinear PDEs Comput. Math. Appl. 43 423-438
[5]  
Cheng AH-D(2007)On choosing optimal shape parameters for RBF approximation Numer. Algorithms 45 345-368
[6]  
Fasshauer GE(1982)Scattered data interpolation: tests of some methods Math. Comp. 48 181-200
[7]  
Fasshauer GE(2009)Node adaptive domain decomposition method by radial basis functions Numer Methods Partial Differential Equations 25 1482-1501
[8]  
Zhang JG(1987)A fast algorithm for particle simulations J. Comput. Phys. 73 325-348
[9]  
Franke R(1971)Multiquadric equations of topography and other irregular surfaces J. Geophys. Res. 176 1905-1915
[10]  
González-Casanova P(2010)Radial basis function interpolation on irregular domain through conformal transplantation J. Sci. Comput. 44 286-300