Given a prime p, we consider the dynamical system generated by repeated exponentiations modulo p, that is, by the map \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${u \mapsto f_g(u)}$$\end{document}, where fg(u) ≡ gu (mod p) and 0 ≤ fg(u) ≤ p − 1. This map is in particular used in a number of constructions of cryptographically secure pseudorandom generators. We obtain nontrivial upper bounds on the number of fixed points and short cycles in the above dynamical system.
机构:
Chinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
Cai, Leizhen
Wang, Weifan
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R ChinaChinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China
Wang, Weifan
Zhu, Xuding
论文数: 0引用数: 0
h-index: 0
机构:
Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, TaiwanChinese Univ Hong Kong, Dept Comp Sci & Engn, Shatin, Hong Kong, Peoples R China