Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells

被引:73
作者
Zhou, Jin [1 ]
Fu, Shiqiang [1 ]
Zhou, Shun [1 ]
Huang, Lishuai [1 ]
Wang, Cheng [1 ]
Guan, Hongling [1 ]
Pu, Dexin [1 ]
Cui, Hongsen [1 ]
Wang, Chen [1 ]
Wang, Ti [1 ]
Meng, Weiwei [2 ]
Fang, Guojia [1 ]
Ke, Weijun [1 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Key Lab Artificial Microand Nanostruct, Minist Educ China, Wuhan 430072, Peoples R China
[2] South China Normal Univ, South China Acad Adv Optoelect, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
CRYSTAL; DEPOSITION;
D O I
10.1038/s41467-024-46679-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mixed tin-lead perovskite solar cells have driven a lot of passion for research because of their vital role in all-perovskite tandem solar cells, which hold the potential for achieving higher efficiencies compared to single-junction counterparts. However, the pronounced disparity in crystallization processes between tin-based perovskites and lead-based perovskites, coupled with the easy Sn2+ oxidation, has long been a dominant factor contributing to high defect densities. In this study, we propose a multidimensional strategy to achieve efficient tin-lead perovskite solar cells by employing a functional N-(carboxypheny)guanidine hydrochloride molecule. The tailored N-(carboxypheny)guanidine hydrochloride molecule plays a pivotal role in manipulating the crystallization and grain growth of tin-lead perovskites, while also serving as a preservative to effectively inhibit Sn2+ oxidation, owing to the strong binding between N-(carboxypheny)guanidine hydrochloride and tin (II) iodide and the elevated energy barriers for oxidation. Consequently, single-junction tin-lead cells exhibit a stabilized power conversion efficiency of 23.11% and can maintain 97.45% of their initial value even after 3500 h of shelf storage in an inert atmosphere without encapsulation. We further integrate tin-lead perovskites into two-terminal monolithic all-perovskite tandem cells, delivering a certified efficiency of 27.35%. The disparity in crystallization processes between tin- and lead-based perovskites has been a dominant factor contributing to high defect densities. Here, authors employ a functional molecule to inhibit tin oxidation, realizing monolithic all-perovskite tandems with certified efficiency over 27%.
引用
收藏
页数:10
相关论文
共 59 条
[31]   Lead-free organic-inorganic tin halide perovskites for photovoltaic applications [J].
Noel, Nakita K. ;
Stranks, Samuel D. ;
Abate, Antonio ;
Wehrenfennig, Christian ;
Guarnera, Simone ;
Haghighirad, Amir-Abbas ;
Sadhanala, Aditya ;
Eperon, Giles E. ;
Pathak, Sandeep K. ;
Johnston, Michael B. ;
Petrozza, Annamaria ;
Herz, Laura M. ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :3061-3068
[32]   Controlled growth of perovskite layers with volatile alkylammonium chlorides [J].
Park, Jaewang ;
Kim, Jongbeom ;
Yun, Hyun-Sung ;
Paik, Min Jae ;
Noh, Eunseo ;
Mun, Hyun Jung ;
Kim, Min Gyu ;
Shin, Tae Joo ;
Seok, Sang Il .
NATURE, 2023, 616 (7958) :724-+
[33]   A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate) [J].
Peng, Jun ;
Khan, Jafar I. ;
Liu, Wenzhu ;
Ugur, Esma ;
Duong, The ;
Wu, Yiliang ;
Shen, Heping ;
Wang, Kai ;
Dang, Hoang ;
Aydin, Erkan ;
Yang, Xinbo ;
Wan, Yimao ;
Weber, Klaus J. ;
Catchpole, Kylie R. ;
Laquai, Frederic ;
De Wolf, Stefaan ;
White, Thomas P. .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[34]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[35]  
Petrov AA, 2017, ACTA CRYSTALLOGR E, V73, P569, DOI 10.1107/S205698901700425X
[36]   Design of low bandgap tin-lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability [J].
Prasanna, Rohit ;
Leijtens, Tomas ;
Dunfield, Sean P. ;
Raiford, James A. ;
Wolf, Eli J. ;
Swifter, Simon A. ;
Werner, Jeremie ;
Eperon, Giles E. ;
de Paula, Camila ;
Palmstrom, Axel F. ;
Boyd, Caleb C. ;
van Hest, Maikel F. A. M. ;
Bent, Stacey F. ;
Teeter, Glenn ;
Berry, Joseph J. ;
McGehee, Michael D. .
NATURE ENERGY, 2019, 4 (11) :939-947
[37]   A Systematic Review of Metal Halide Perovskite Crystallization and Film Formation Mechanism Unveiled by In Situ GIWAXS [J].
Qin, Minchao ;
Chan, Pok Fung ;
Lu, Xinhui .
ADVANCED MATERIALS, 2021, 33 (51)
[38]   Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation [J].
Ricciarelli, Damiano ;
Meggiolaro, Daniele ;
Ambrosio, Francesco ;
De Angelis, Filippo .
ACS ENERGY LETTERS, 2020, 5 (09) :2787-2795
[39]   Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells [J].
Shao, Yuchuan ;
Xiao, Zhengguo ;
Bi, Cheng ;
Yuan, Yongbo ;
Huang, Jinsong .
NATURE COMMUNICATIONS, 2014, 5
[40]   A grid-based Bader analysis algorithm without lattice bias [J].
Tang, W. ;
Sanville, E. ;
Henkelman, G. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (08)