Rotational and helical surface approximation for reverse engineering

被引:1
作者
Helmut Pottmann
Thomas Randrup
机构
[1] Technische Universität Wien,Institut für Geometrie
[2] Odense Steel Shipyard Ltd.,undefined
来源
Computing | 1998年 / 60卷
关键词
65D17; 68U07; 53A05; Computer aided design; computer aided manufacturing; surface approximation; reverse engineering; line geometry; surface of revolution; helical surface;
D O I
暂无
中图分类号
学科分类号
摘要
Given a surface in 3-space or scattered points from a surface, we investigate the problem of deciding whether the data may be fitted well by a cylindrical surface, a surface of revolution or a helical surface. Furthermore, we show how to compute an approximating surface and put special emphasis to basic shapes used in computer aided design. The algorithms apply methods of line geometry to the set of surface normals in combination with techniques of numerical approximation. The presented results possess applications in reverse engineering and computer aided manufacturing.
引用
收藏
页码:307 / 322
页数:15
相关论文
共 21 条
  • [1] Eckhardt U.(1993)Invariant thinning Int. J. Pattern Rec. Art. Intell. 7 1115-1144
  • [2] Maderlechner G.(1996)Approximation of digitized points by surfaces of revolution Comput. Graphics 20 85-94
  • [3] Elsässer G.(1994)Least-squares fitting of circles and ellipses BIT 34 558-578
  • [4] Hoschek J.(1995)Segmentation of range images as the search for parametric geometric models Int. J. Comput. Vision 14 253-277
  • [5] Gander W.(1991)Robust regression methods for computer vision: A review Int. J. Comput. Vision 6 59-70
  • [6] Golub G.H.(1979)Digital topology Am. Math. Monthly 86 621-630
  • [7] Strebel R.(1995)Direct construction of polynomial surfaces from dense range images through region growing ACM Trans. Graphics 14 171-200
  • [8] Leonardis A.(1997)Reverse engineering of geometric models — an introduction Comput. Aided Des. 29 255-268
  • [9] Gupta A.(1964)Zyklische Strahlkomplexe und geodätische Linien auf euklidischen und nichteuklidischen Dreh- und Schraubflächen Math. Z. 85 407-418
  • [10] Bajcsy R.(undefined)undefined undefined undefined undefined-undefined