A new distributional treatment for time series anomaly detection

被引:0
作者
Kai Ming Ting
Zongyou Liu
Lei Gong
Hang Zhang
Ye Zhu
机构
[1] Nanjing University,National Key Laboratory for Novel Software Technology, School of Artificial Intelligence
[2] Deakin University,Centre for Cyber Resilience and Trust
来源
The VLDB Journal | 2024年 / 33卷
关键词
Time series; Anomaly detection; Isolation kernel; Distributional kernel;
D O I
暂无
中图分类号
学科分类号
摘要
Time series is traditionally treated with two main approaches, i.e., the time domain approach and the frequency domain approach. These approaches must rely on a sliding window so that time-shift versions of a sequence can be measured to be similar. Coupled with the use of a root point-to-point measure, existing methods often have quadratic time complexity. We offer the third R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} domain approach. It begins with an insight that sequences in a stationary time series can be treated as sets of independent and identically distributed (iid) points generated from an unknown distribution in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}. This R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} domain treatment enables two new possibilities: (a) The similarity between two sequences can be computed using a distributional measure such as Wasserstein distance (WD), kernel mean embedding or isolation distributional kernel (KI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_I$$\end{document}), and (b) these distributional measures become non-sliding-window-based. Together, they offer an alternative that has more effective similarity measurements and runs significantly faster than the point-to-point and sliding-window-based measures. Our empirical evaluation shows that KI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_I$$\end{document} is an effective and efficient distributional measure for time series; and KI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_I$$\end{document}-based detectors have better detection accuracy than existing detectors in two tasks: (i) anomalous sequence detection in a stationary time series and (ii) anomalous time series detection in a dataset of non-stationary time series. The insight makes underutilized “old things new again” which gives existing distributional measures and anomaly detectors a new life in time series anomaly detection that would otherwise be impossible.
引用
收藏
页码:753 / 780
页数:27
相关论文
共 90 条
  • [41] Sharir M(undefined)undefined undefined undefined undefined-undefined
  • [42] Goldberger AL(undefined)undefined undefined undefined undefined-undefined
  • [43] Amaral LA(undefined)undefined undefined undefined undefined-undefined
  • [44] Glass L(undefined)undefined undefined undefined undefined-undefined
  • [45] Hausdorff JM(undefined)undefined undefined undefined undefined-undefined
  • [46] Ivanov PC(undefined)undefined undefined undefined undefined-undefined
  • [47] Mark RG(undefined)undefined undefined undefined undefined-undefined
  • [48] Mietus JE(undefined)undefined undefined undefined undefined-undefined
  • [49] Moody GB(undefined)undefined undefined undefined undefined-undefined
  • [50] Peng CK(undefined)undefined undefined undefined undefined-undefined