Stability of planar diffusion wave for the quasilinear wave equation with nonlinear damping

被引:0
作者
Yan Yong
机构
[1] University of Shanghai for Science and Technology,College of Science
来源
Acta Mathematicae Applicatae Sinica, English Series | 2015年 / 31卷
关键词
stability; planar diffusion wave; quasilinear wave equation; nonlinear damping; 35B35; 35B40; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will show that under some smallness conditions, the planar diffusion wave \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar v\left( {\frac{{x_1 }} {{\sqrt {1 + t} }}} \right)$$\end{document} is stable for a quasilinear wave equation with nonlinear damping: vtt − Δf(v) + vt + g(vt) = 0, x = (x1, x2, ⋯, xn) ∈ ℝn, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar v\left( {\frac{{x_1 }} {{\sqrt {1 + t} }}} \right)$$\end{document} is the unique similar solution to the one dimensional nonlinear heat equation: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$v_t - f(v)_{x_1 x_1 } = 0,f'(v) > 0$\end{document}, v(±∞, t) = v±, v+ ≠ v−. We also obtain the L∞ time decay rate which reads \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left\| {v - \bar v} \right\|_{L^\infty } = O(1)(1 + t) - \tfrac{r} {4} $\end{document}, where r = min{3, n}. To get the main result, the energy method and a new inequality have been used.
引用
收藏
页码:17 / 30
页数:13
相关论文
共 33 条
[1]  
Dafermos C(1995)A system of hyperbolic conservation laws with frictional damping Z. Angew. Math. Phys. 46 294-307
[2]  
Hsiao L(1992)Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping Commun. Math. Phys. 143 599-605
[3]  
Liu T(1993)Nonlinear diffusion phenomena of nonlinear hyperbolic system Chinese Ann. Math. Ser. B 14 465-480
[4]  
Hsiao L(1999)Initial boundary value problem for the system compressible adiabatic flow through porous media J. Diff. Eqns. 159 280-305
[5]  
Liu T(1996)Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media J. Diff. Eqns. 125 329-365
[6]  
Hsiao L(1998)The pointwise estimates for diffusion wave for the Navier-Stokes systems in odd multidimensions Comm. Math. Phys. 196 145-173
[7]  
Pan R(2008)The pointwise estimates of solutions for dissipative wave equation in multi-dimensions Discrete Contin. Dyn. Syst. 20 1013-1028
[8]  
Hsiao L(1990)The one-dimensional Darcy’s law as the limit of a compressible Euler flow J. Diff. Eqns. 84 129-147
[9]  
Luo T(2005)Optimal convergence rates to diffusion waves for solutions of the hyperbolic conservation laws with damping J. Math. Fluid Mech. 7 224-240
[10]  
Liu T(1976)On the asymptotic behavior of solutions of semi-linear wave equation Publ. RIMS,^Kyoto Univ. 12 169-189