Radius of locally convex subsets in Alexandrov spaces with curvature ⩾ 1 and radius > π/2

被引:0
作者
Yusheng Wang
Zhongyang Sun
机构
[1] Beijing Normal University,School of Mathematical Sciences (and the Key Laboratory on Mathematics and Complex System)
[2] Zhejiang University,Center of Mathematical Sciences
来源
Frontiers of Mathematics in China | 2014年 / 9卷
关键词
Alexandrov space; convex subset; radius; 53C20; 53C35;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a complete Alexandrov space with curvature ⩾ 1 and radius > π/2. We prove that any connected, complete, and locally convex subset without boundary in X also has the radius > π/2.
引用
收藏
页码:417 / 423
页数:6
相关论文
共 9 条
[1]  
Burago Y(1992)Alexandrov spaces with curvature bounded below Uspekhi Mat Nauk 47 3-51
[2]  
Gromov M(1993)A radius sphere theorem Invent Math 112 577-583
[3]  
Perel’man A D(1977)A generalized sphere theorem Ann Math 106 201-211
[4]  
Grove K(2004)On the geometry of positively curved manifolds with large radius Illinois J Math 48 89-96
[5]  
Petersen P(2002)Some applications of critical point theory of distance functions on Riemannian manifolds Compos Math 132 49-55
[6]  
Grove K(undefined)undefined undefined undefined undefined-undefined
[7]  
Shiohama K(undefined)undefined undefined undefined undefined-undefined
[8]  
Wang Q(undefined)undefined undefined undefined undefined-undefined
[9]  
Xia C(undefined)undefined undefined undefined undefined-undefined