Novel deep learning-based solution for identification of prognostic subgroups in liver cancer (Hepatocellular carcinoma)

被引:0
作者
Alice R. Owens
Caitríona E. McInerney
Kevin M. Prise
Darragh G. McArt
Anna Jurek-Loughrey
机构
[1] Queen’s University Belfast,School of Electronics, Electrical Engineering and Computer Science
[2] Queen’s University Belfast,Patrick G. Johnson Centre for Cancer Research
来源
BMC Bioinformatics | / 22卷
关键词
Hepatocellular carcinoma; Deep learning; Clustering; Prognostic subgroups; Autoencoders; Survival analysis; Liver cancer;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 90 条
[1]  
El-Serag HB(2018)EASL clinical practice guidelines: management of hepatocellular carcinoma J Hepatol. 69 182-236
[2]  
Ghouri YA(2012)Epidemiology of viral hepatitis and hepatocellular carcinoma Gastroenterology 142 1264-1273.e1
[3]  
Mian I(2017)Review of hepatocellular carcinoma: Epidemiology, etiology, and carcinogenesis J Carcinog. 16 1-206
[4]  
Rowe JH(2018)Deep Learning data integration for better risk stratification models of bladder cancer AMIA Jt Summits Transl Sci 2017 197-1259
[5]  
Poirion OB(2018)Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma Front Genet 9 477-104
[6]  
Chaudhary K(2018)Deep learning-based multi-omics integration robustly predicts survival in liver cancer Clin Cancer Res 24 1248-1617
[7]  
Garmire LX(2016)ADAGE-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions MSystems 1 e00025-15-509
[8]  
Zhang L(2018)DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network BMC Med Res Methodol 18 24-30
[9]  
Lv C(2019)Deep-learning cardiac motion analysis for human survival prediction Nat Mach Intell 1 95-65
[10]  
Jin Y(2018)TCGA-assembler 2: software pipeline for retrieval and processing of TCGA/CPTAC data Bioinformatics 34 1615-7267