Duality for nondifferentiable minimax fractional programming problem involving higher order (C,α,ρ,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varvec{C},\varvec{\alpha}, \varvec{\rho}, \varvec{d})$$\end{document}-convexity

被引:1
作者
Anurag Jayswal
Vivek Singh
Krishna Kummari
机构
[1] Indian Institute of Technology (Indian School of Mines),Department of Applied Mathematics
关键词
Minimax fractional programming problem; Nondifferentiable programming; Higher-order duality; Higher-order (; )-convexity; 90C46; 90C29; 49J52;
D O I
10.1007/s12597-016-0295-0
中图分类号
学科分类号
摘要
In this paper, we present new class of higher-order (C,α,ρ,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C, \alpha , \rho , d)$$\end{document}-convexity and formulate two types of higher-order duality for a nondifferentiable minimax fractional programming problem. Based on the higher-order (C,α,ρ,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C, \alpha , \rho , d)$$\end{document}-convexity, we establish appropriate higher-order duality results. These results extend several known results to a wider class of programs.
引用
收藏
页码:598 / 617
页数:19
相关论文
共 47 条
[1]  
Ahmad I(2013)Second order nondifferentiable minimax fractional programming with square root terms Filomat 27 126-133
[2]  
Ahmad I(2012)Higher-order duality in nondifferentiable minimax fractional programming involving generalized convexity J. Inequal. Appl. 2012 306-551
[3]  
Ahmad I(2006)Duality in nondifferentiable minimax fractional programming with generalized convexity Appl. Math. Comput. 176 545-30
[4]  
Husain Z(2011)Duality in nondifferentiable minimax fractional programming with J. Inequal. Appl. 2011 75-494
[5]  
Ahmad I(2013)-invexity J. Appl. Math. Comput. 43 11-237
[6]  
Gupta SK(2016)On second-order duality for a class of nondifferentiable minimax fractional programming problem with Acta Math. Appl. Sin. Engl. Ser. 32 485-886
[7]  
Kailey N(2007)-convexity J. Math. Anal. Appl. 329 229-32
[8]  
Agarwal RP(2012)Higher-order symmetric duality in multiobjective programming problems J. Inequal. Appl. 2012 187-77
[9]  
Dangar D(2014)Higher-order nondifferentiable symmetric duality with generalized J. Comput. Appl. Math. 255 878-141
[10]  
Gupta SK(1986)-convexity J. Inf. Optim. Sci. 3 25-126