Preconditioning of the small intestine to ischemia in rats

被引:26
作者
Vlasov T.D. [1 ]
Smirnov D.A. [1 ]
Nutfullina G.M. [1 ]
机构
[1] Department of Pathophysiology, Fac. Surg. and Pathological Anatomy, I. P. Pavlov St. Petersburg State, 197022 St. Petersburg
关键词
Ischemic preconditioning; Nitric oxide; Small intestine;
D O I
10.1023/A:1015896614819
中图分类号
学科分类号
摘要
Measures reflecting the state of the small intestine were studied in rats after ischemia lasting 90 min produced by clamping the superior mesenteric artery and reperfusion for 30 min. Preconditioning of the intestine to ischemia was induced by producing intestinal ischemia for 10 min followed by 10 min of reperfusion (ischemic preconditioning), 30-min limb ischemia with 15-min reperfusion (distant ischemic preconditioning), and i.v. L-arginine. The smallest amount of damage to the intestine after 90 min of ischemia and 30 min of reperfusion was seen in the group of rats subjected to ischemic preconditioning. The protective effect of ischemic preconditioning was partially blocked by administration of N-ω-nitro-L-arginine (a blocker of NO synthesis). Doses of L-arginine also had protective effects, though these were smaller than those of ischemic preconditioning. Preliminary ischemia-reperfusion of the limb had no effect on the state of the intestine. Thus: 1) ischemic preconditioning of the intestine is partially associated with activation of nitric oxide synthesis, and 2) distant ischemic preconditioning did not protect the intestine.
引用
收藏
页码:449 / 453
页数:4
相关论文
共 21 条
[1]  
Vlasov T.D., Vascular reactivity and thrombus formation parameters in post-ischemic reperfusion, Ros. Fiziol. Zh. im. I. M. Sechenova, 85, 11, pp. 1391-1385, (1999)
[2]  
Gurin A.V., Molosh A.I., Sidorenko G.I., Discontinuous ischemia - A unique adaptive phenomenon. Perspectives for new approaches to pharmacological intervention, Kardiologiya, 6, pp. 45-52, (1997)
[3]  
Malakhova M.Ya., A Method for Recording Endogenous Intoxication, (1995)
[4]  
Petrishchev N.N., Vlasov T.D., Functional state of the epithelium in ischemia-reperfusion, Ros. Fiziol. Zh. im. I. M. Sechenova, 86, 2, pp. 148-163, (2000)
[5]  
Puchkov K.V., Gausman B.Ya., Seliverstov D.V., Pathogenesis and methods of correcting regional hemodynamics in the intestine in ischemia, Khirurgiya, 7, pp. 64-68, (1997)
[6]  
Ramazanova L.I., Bardakhch'yan E.A., Ultrastructural and biochemical characteristics of the ischemic myocardium after reperfusion, Kardiologiya, 2, pp. 82-86, (1985)
[7]  
Attkiss K.J., Suski M., Hunt T.K., Buncke H.J., Ischemic preconditioning of skeletal muscle improves tissue oxygenation during reperfusion, J. Reconstr. Microsurg., 15, 3, pp. 223-228, (1999)
[8]  
Barone F.C., White R.F., Spera P.A., Ellison J., Currie R.W., Wang X., Feuerstein G.Z., Ischemic preconditioning and brain tolerance: Temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression, Stroke, 29, 9, pp. 1937-1950, (1998)
[9]  
Golino P., Ragni M., Cirillo P., Avvedimento V.E., Feliciello A., Esposito N., Scognamiglio A., Trimarco B., Iaccarino G., Condorelli M., Chiariello M., Ambrosio G., Effects of tissue factor induced by oxygen free radicals on coronary flow during reperfusion, Nat. Med., 2, 1, pp. 35-50, (1996)
[10]  
Jerome S.N., Smith C.W., Korthuis R.J., CD18-dependent adherence reactions play an important role in the development of the no-reflow phenomenon, Amer. J. Physiol., 264, 2 PART 2, pp. 479-483, (1993)