\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} vacua in exceptional generalized geometry

被引:0
作者
Mariana Graña
Francesco Orsi
机构
[1] CEA/ Saclay,Institut de Physique Théorique
关键词
Flux compactifications; Superstring Vacua; Differential and Algebraic Geometry;
D O I
10.1007/JHEP08(2011)109
中图分类号
学科分类号
摘要
We study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} Minkowski vacua in compactifications of type II string theory in the language of exceptional generalized geometry (EGG). We find the differential equations governing the EGG analogues of the pure spinors of generalized complex geometry, namely the structures which parameterize the vector and hypermultiplet moduli spaces of the effective four-dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 2 $\end{document} supergravity obtained after compactification. In order to do so, we identify a twisted differential operator that contains NS and RR fluxes and transforms covariantly under the U-duality group, E7(7). We show that the conditions for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 1 $\end{document} vacua correspond to a subset of the structures being closed under the twisted derivative.
引用
收藏
相关论文
共 70 条
  • [1] Candelas P(1985)Vacuum Configurations for Superstrings Nucl. Phys. B 258 46-undefined
  • [2] Horowitz GT(2002)Hierarchies from fluxes in string compactifications Phys. Rev. D 66 106006-undefined
  • [3] Strominger A(2003)Generalized Calabi-Yau manifolds Quart. J. Math. Oxford Ser. 54 281-undefined
  • [4] Witten E(2004)Supersymmetric backgrounds from generalized Calabi-Yau manifolds JHEP 08 046-undefined
  • [5] Giddings SB(2005)Generalized structures of N =1 vacua JHEP 11 020-undefined
  • [6] Kachru S(2007)Generalised geometry for M-theory JHEP 07 079-undefined
  • [7] Polchinski J(2008)M-theory, exceptional generalised geometry and superpotentials JHEP 09 123-undefined
  • [8] Hitchin N(2009)E7(7) formulation of N =2 backgrounds JHEP 07 104-undefined
  • [9] Graña M(2010)U-dual fluxes and Generalized Geometry JHEP 11 083-undefined
  • [10] Minasian R(1996)Compact Riemannian 7-Manifolds with Holonomy G2. I J. Diff. Geom. 43 291-undefined