Free analysis and random matrices

被引:0
作者
Alice Guionnet
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
[2] Centre national de la recherche scientifique,undefined
来源
Japanese Journal of Mathematics | 2016年 / 11卷
关键词
random matrices; non-commutative measure; Schwinger–Dyson equation; 15A52 (primary); 46L50; 46L54 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We describe the Schwinger–Dyson equation related with the free difference quotient. Such an equation appears in different fields such as combinatorics (via the problem of the enumeration of planar maps), operator algebra (via the definition of a natural integration by parts in free probability), in classical probability (via random matrices or particles in repulsive interaction). In these lecture notes, we shall discuss when this equation uniquely defines the system and in such a case how it leads to deep properties of the solution. This analysis can be extended to systems which approximately satisfy these equations, such as random matrices or Coulomb gas interacting particle systems.
引用
收藏
页码:33 / 68
页数:35
相关论文
共 50 条
  • [1] Free analysis and random matrices
    Guionnet, Alice
    JAPANESE JOURNAL OF MATHEMATICS, 2016, 11 (01): : 33 - 68
  • [2] Free probability and random matrices
    Speicher, Roland
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 477 - 501
  • [3] Classical and free infinitely divisible distributions and random matrices
    Benaych-Georges, F
    ANNALS OF PROBABILITY, 2005, 33 (03) : 1134 - 1170
  • [4] Support Recovery With Sparsely Sampled Free Random Matrices
    Tulino, Antonia M.
    Caire, Giuseppe
    Verdu, Sergio
    Shamai , Shlomo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) : 4243 - 4271
  • [5] Support Recovery with Sparsely Sampled Free Random Matrices
    Tulino, Antonia
    Caire, Giuseppe
    Shamai, Shlomo
    Verdu, Sergio
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,
  • [6] TRACY-WIDOM LIMIT FOR FREE SUM OF RANDOM MATRICES
    Ji, Hong chang
    Park, Jaewhi
    ANNALS OF PROBABILITY, 2025, 53 (01) : 239 - 298
  • [7] Methodologies in spectral analysis of large dimensional random matrices, a review - Comment: Spectral analysis of random matrices using the replica method
    Rodgers, GJ
    STATISTICA SINICA, 1999, 9 (03) : 662 - 667
  • [8] Bridges and random truncations of random matrices
    Beffara, Vincent
    Donati-Martin, Catherine
    Rouault, Alain
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2014, 3 (02)
  • [9] Random antagonistic matrices
    Cicuta, Giovanni M.
    Molinari, Luca Guido
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (37)
  • [10] ENTRYWISE EIGENVECTOR ANALYSIS OF RANDOM MATRICES WITH LOW EXPECTED RANK
    Abbe, Emmanuel
    Fan, Jianqing
    Wang, Kaizheng
    Zhong, Yiqiao
    ANNALS OF STATISTICS, 2020, 48 (03) : 1452 - 1474