Free analysis and random matrices

被引:0
作者
Alice Guionnet
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
[2] Centre national de la recherche scientifique,undefined
来源
Japanese Journal of Mathematics | 2016年 / 11卷
关键词
random matrices; non-commutative measure; Schwinger–Dyson equation; 15A52 (primary); 46L50; 46L54 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We describe the Schwinger–Dyson equation related with the free difference quotient. Such an equation appears in different fields such as combinatorics (via the problem of the enumeration of planar maps), operator algebra (via the definition of a natural integration by parts in free probability), in classical probability (via random matrices or particles in repulsive interaction). In these lecture notes, we shall discuss when this equation uniquely defines the system and in such a case how it leads to deep properties of the solution. This analysis can be extended to systems which approximately satisfy these equations, such as random matrices or Coulomb gas interacting particle systems.
引用
收藏
页码:33 / 68
页数:35
相关论文
共 55 条
[1]  
Bekerman F.(2015)Transport maps for Comm. Math. Phys. 338 589-619
[2]  
Figalli A.(1998)-matrix models and universality Probab. Theory Related Fields 112 373-409
[3]  
Guionnet A.(2001)Stochastic calculus with respect to free Brownian motion and analysis on Wigner space Ann. Inst. H. Poincaré Probab. Statist. 37 581-606
[4]  
Biane P.(2013)Free diffusions, free entropy and free Fisher information Comm. Math. Phys. 317 447-483
[5]  
Speicher R.(2014)Asymptotic expansion of Comm. Math. Phys. 332 261-353
[6]  
Biane P.(2014) matrix models in the one-cut regime Duke Math. J. 163 1127-1190
[7]  
Speicher R.(2009)Edge universality of beta ensembles Adv. Math. 222 172-215
[8]  
Borot G.(2010)Universality of general Funct. Anal. 258 3662-3674
[9]  
Guionnet A.(2016)-ensembles Trans. Amer. Math. Soc. 368 4525-4560
[10]  
Bourgade P.(2007)Asymptotics of unitary and orthogonal matrix integrals Commun. Number Theory Phys. 1 347-452