On the Temperature Slip Boundary Condition in a Mixed Convection Boundary-Layer Flow in a Porous Medium

被引:0
作者
John H. Merkin
Azizah Mohd Rohni
Syakila Ahmad
Ioan Pop
机构
[1] University of Leeds,Department of Applied Mathematics
[2] Universiti Utara Malaysia,UUM College of Arts & Sciences, Physical Science Division, Building of Quantitative Sciences
[3] Universiti Sains Malaysia,School of Mathematical Sciences
[4] University of Cluj,Faculty of Mathematics
来源
Transport in Porous Media | 2012年 / 94卷
关键词
Porous medium; Unsteady flow; Mixed convection; Fluid transfer; Temperature slip condition;
D O I
暂无
中图分类号
学科分类号
摘要
A problem derived previously (Rohni et al., Transp Porous Media 92:1–14, 2012) for unsteady mixed convection flow in a porous medium involving a ‘temperature slip’ boundary condition and fluid transfer through the boundary is considered. It is shown that the solution to this problem can be directly related to the solution of the corresponding problem for a prescribed surface temperature, involving a mixed convection parameter λ, an unsteadiness parameter A and transpiration parameter s. This latter problem is discussed in detail, particular attention being given to the steady analogue, A = 0, allowing for fluid transfer through the surface, and to the unsteady problem, A > 0, for an impermeable surface, s = 0. Asymptotic results are obtained for large fluid transfer rates, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s \gg 1}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${s <0 , |s| \gg 1}$$\end{document} and for large A. Particular attention is given to deriving asymptotic results for the critical points which determine the range of existence of solutions.
引用
收藏
页码:133 / 147
页数:14
相关论文
共 45 条
[11]  
McVeigh A.G.(2010)Mixed convection boundary layer similarity solutions: prescribed wall heat flux Transp. Porous Media 85 397-414
[12]  
Fang T.(2006)Natural convection boundary-layer flow in a porous medium with temperature dependent boundary conditions Int. J. Heat Mass Transf. 49 4681-4686
[13]  
Zhang J.(2009)Final steady flow near a stagnation point on a vertical surface in a porous medium Heat Mass Transf. 45 1447-1452
[14]  
Yao S.(2010)Effects of slip and heat transfer analysis of flow over an unsteady stretching surface Chin. Phys. Lett. 27 124401-2688
[15]  
Fang T.(2004)Effects of slip on unsteady mixed convective flow and heat transfer past a stretching surface Int. J. Heat Mass Transf. 47 2681-14
[16]  
Yao S.(2012)Unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium Transp. Porous Media 92 1-7672
[17]  
Aziz A.(2006)Unsteady mixed convection boundary flow with suction and temperature slip effects near the stagnation-point on a vertical permeable surface embedded in a porous medium Chem. Eng. Sci. 61 7668-1194
[18]  
Ling S.C.(2011)Stagnation slip flow and heat transfer on a moving plate Int. J. Non-Linear Mech. 46 1191-427
[19]  
Nazar R.(1958)Slip flow due to a stretching cylinder Trans. ASME 25 421-undefined
[20]  
Pop I.(undefined)Unsteady laminar boundary layers in an incompressible stagnation flow undefined undefined undefined-undefined