Rectifiability of Self-Contracted Curves in the Euclidean Space and Applications

被引:0
|
作者
A. Daniilidis
G. David
E. Durand-Cartagena
A. Lemenant
机构
[1] Universidad de Chile,Departamento de Ingeniería Matemática
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[3] Université Paris-Sud,Laboratoire de Mathématiques
[4] Institut Universitaire de France,Departamento de Matemática Aplicada
[5] ETSI Industriales,Université Paris Diderot
[6] UNED, Paris 7
[7] U.F.R de Mathématiques,undefined
来源
The Journal of Geometric Analysis | 2015年 / 25卷
关键词
Self-contracted curve; Rectifiable curve; Convex foliation; Secant; Self-expanded curve; Proximal algorithm; 53A04; 37N40; 49J52; 49J53; 52A10; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
It is hereby established that, in Euclidean spaces of finite dimension, bounded self-contracted curves have finite length. This extends the main result of Daniilidis et al. (J. Math. Pures Appl. 94:183–199, 2010) concerning continuous planar self-contracted curves to any dimension, and dispenses entirely with the continuity requirement. The proof borrows heavily from a geometric idea of Manselli and Pucci (Geom. Dedic. 38:211–227, 1991) employed for the study of regular enough curves, and can be seen as a nonsmooth adaptation of the latter, albeit a nontrivial one. Applications to continuous and discrete dynamical systems are discussed: continuous self-contracted curves appear as generalized solutions of nonsmooth convex foliation systems, recovering a hidden regularity after reparameterization, as a consequence of our main result. In the discrete case, proximal sequences (obtained through implicit discretization of a gradient system) give rise to polygonal self-contracted curves. This yields a straightforward proof for the convergence of the exact proximal algorithm, under any choice of parameters.
引用
收藏
页码:1211 / 1239
页数:28
相关论文
共 50 条
  • [1] Rectifiability of Self-Contracted Curves in the Euclidean Space and Applications
    Daniilidis, A.
    David, G.
    Durand-Cartagena, E.
    Lemenant, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1211 - 1239
  • [2] Self-contracted Curves in CAT(0)-Spaces and Their Rectifiability
    Ohta, Shin-ichi
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (01) : 936 - 967
  • [3] Self-contracted curves in Riemannian manifolds
    Daniilidis, Aris
    Deville, Robert
    Durand-Cartagena, Estibalitz
    Rifford, Ludovic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1333 - 1352
  • [4] Self-contracted curves have finite length
    Stepanov, Eugene
    Teplitskaya, Yana
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 455 - 481
  • [5] Metric and Geometric Relaxations of Self-Contracted Curves
    Daniilidis, Aris
    Deville, Robert
    Durand-Cartagena, Estibalitz
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (01) : 81 - 109
  • [6] Metric and Geometric Relaxations of Self-Contracted Curves
    Aris Daniilidis
    Robert Deville
    Estibalitz Durand-Cartagena
    Journal of Optimization Theory and Applications, 2019, 182 : 81 - 109
  • [7] SELF-CONTRACTED CURVES ARE GRADIENT FLOWS OF CONVEX FUNCTIONS
    Durand-cartagena, Estibalitz
    Lemenant, Antoine
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (06) : 2517 - 2531
  • [8] Self-Contracted Curves in Spaces With Weak Lower Curvature Bound
    Lebedeva, Nina
    Ohta, Shin-ichi
    Zolotov, Vladimir
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (11) : 8623 - 8656
  • [9] Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions
    Daniilidis, Aris
    Ley, Olivier
    Sabourau, Stephane
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (02): : 183 - 199
  • [10] Ubiquitous Algorithms in Convex Optimization Generate Self-Contracted Sequences
    Boehm, Axel
    Daniilidis, Aris
    JOURNAL OF CONVEX ANALYSIS, 2022, 29 (01) : 119 - 128