Fractional Choquard-Kirchhoff problems with critical nonlinearity and Hardy potential

被引:0
作者
Wenjing Chen
Vicenţiu D. Rădulescu
Binlin Zhang
机构
[1] Southwest University,School of Mathematics and Statistics
[2] AGH University of Science and Technology,Faculty of Applied Mathematics
[3] University of Craiova,Department of Mathematics
[4] Shandong University of Science and Technology,College of Mathematics and System Science
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Fractional ; –Kirchhoff type problem; Choquard nonlinearity; Critical Hardy–Sobolev term; Concentration-compactness principle; 35J20; 35J60; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the following fractional p-Kirchhoff type problem a+b[u]s,pp(θ-1)(-Δ)psu=(Iμ∗|u|q)|u|q-2u+|u|pα∗-2u|x|α,u>0,inΩ,u=0,inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} \left( a+b[u]_{s,p}^{p(\theta -1)}\right) (-\Delta )^s_pu = \Big ({\mathcal {I}}_\mu *|u|^q\Big )|u|^{q-2}u+\frac{|u|^{p_{\alpha }^*-2}u}{|x|^\alpha },\ u>0, &{}\text{ in }\ \Omega ,\\ u=0, \ &{} \mathrm{in}\ {\mathbb {R}}^N\backslash \Omega , \end{array} \right. \end{aligned}$$\end{document}where [u]s,pp=∬R2N|u(x)-u(y)|p|x-y|N+psdxdy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[u]_{s,p}^{p}=\displaystyle \iint _{{\mathbb {R}}^{2N}} \frac{|u(x) - u(y)|^{p}}{|x - y|^{N+ps}}\, dxdy$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document} containing 0 with Lipschitz boundary, (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_{p}^{s}$$\end{document} denotes the fractional p-Laplacian, 0≤α<ps<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha<ps<N$$\end{document} with s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, a≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0$$\end{document}, b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b>0$$\end{document}, 1<θ≤pα∗/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<\theta \le p_\alpha ^*/ p$$\end{document}, pα∗=(N-α)pN-ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\alpha ^*=\frac{(N-\alpha )p}{N-ps}$$\end{document} is the fractional critical Hardy-Sobolev exponent, Iμ(x)=|x|-μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {I}}_\mu (x)=|x|^{-\mu }$$\end{document} is the Riesz potential of order μ∈(0,min{N,2ps})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \in (0,\min \{N,2ps\})$$\end{document}, q∈(1,Np/(N-ps))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1, Np/(N-ps))$$\end{document} satisfies some restrictions. By the concentration-compactness principle and mountain pass theorem, we obtain the existence of a positive weak solution for the above problem as q satisfies suitable ranges.
引用
收藏
相关论文
共 80 条
[1]  
Fröhlich H(1937)Theory of electrical breakdown in ionic crystal Proc. Roy. Soc. Edinburgh Sect. A 160 230-241
[2]  
Elgart A(2007)Mean field dynamics of boson stars Commun. Pure Appl. Math. 60 500-545
[3]  
Schlein B(2012)The Schrödinger-Newton equation as a non-relativistic limit of self-gravitating Klein-Gordon and Dirac fields Classical Quant. Grav. 29 215010-668
[4]  
Giulini D(1995)Gravitational self-energy as the litmus of reality Mod. Phys. Lett. A 10 657-R356
[5]  
Großardt A(2003)General relativistic boson stars Class. Quantum Grav. 20 R301-1939
[6]  
Jones KRW(1998)Quantum computation, entanglement and state reduction R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356 1927-467
[7]  
Schunck FE(2010)Classification of positive solitary solutions of the nonlinear Choquard equation Arch. Ration. Mech. Anal. 195 455-813
[8]  
Mielke EW(2017)A guide to the Choquard equation J. Fixed Point Theor. Appl. 19 773-1212
[9]  
Penrose R(2019)Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth Adv. Nonlinear Anal. 8 1184-1098
[10]  
Ma L(2019)A critical fractional Choquard-Kirchhoff problem with magnetic field Commun. Contemp. Math. 21 1850004-170