Dimensional characteristics of diffusion chaos

被引:9
作者
Glyzin S.D. [1 ]
机构
[1] Demidov State University, Yaroslavl, 150000
关键词
Attractor; Bifurcation; Diffusion chaos; Ginzburg-Landau equation; Landau-Sell scenario; Lyapunov dimension;
D O I
10.3103/S0146411613070031
中图分类号
学科分类号
摘要
The phenomenon of multimode diffusion chaos is considered. For a number of examples, it is shown by an extended numerical experiment that the Lyapunov dimension of the attractor of a distributed evolutionary dynamic system increases when the diffusion coefficient tends to zero. © Allerton Press, Inc., 2013.
引用
收藏
页码:452 / 469
页数:17
相关论文
共 25 条
[1]  
Nicolis G., Prigogine I., Self-Organization in Non-Equilibrium Systems, (1977)
[2]  
Ahromeeva T.S., Kurdyumov S.P., Malinetskiy G.G., Samarskiy A.A., Struktury I Khaos V Nelineinykh Sredakh (Structures and Chaos in Nonlinear Media), (2007)
[3]  
Mishchenko E.F., Sadovnichiy V.A., Kolesov A.Yu., Rozov N.Kh., Avtovolnovye Protsessy V Nelineinykh Sredakh S Diffuziei (Autowave Processes in Nonlinear Media), (2005)
[4]  
Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, pp. 130-141, (1963)
[5]  
Ruelle D., Takens F., On the nature of turbulence, Comm. Math. Phys., 20, pp. 167-192, (1971)
[6]  
Kuramoto Y., Diffusion-induced chaos in reaction systems, Prog. Theor. Phys., Suppl., 64, pp. 346-367, (1978)
[7]  
Glyzin S.D., Dynamic properties of the simplest finite-difference approximations of the 'reaction-duffusion' boundary value problem, Differ. Equations, 33, pp. 808-814, (1997)
[8]  
Kolesov A.Yu., Description of phase instability of a system of harmonic oscillators weakly coupled by diffusion, Dokl. Akad. Nauk SSSR, 300, pp. 831-835, (1988)
[9]  
Glyzin S.D., Numerical justification of the Landau-Kolesov conjecture on the nature of turbulence, Math. Models Biology Med., 3, pp. 31-36, (1989)
[10]  
Glyzin S.D., Difference approximations of 'reaction-diffusion' equation on a segment, Model. Anal. Inform. Syst., 16, 3, pp. 96-116, (2009)