Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data

被引:0
|
作者
Sara A. Yones
Alva Annett
Patricia Stoll
Klev Diamanti
Linda Holmfeldt
Carl Fredrik Barrenäs
Jennifer R. S. Meadows
Jan Komorowski
机构
[1] Uppsala University,Science for Life Laboratory, Department of Cell and Molecular Biology
[2] ETH Zurich,Department of Biosystems Science and Engineering
[3] Uppsala University,Science for Life Laboratory, Department of Immunology, Genetics and Pathology
[4] Uppsala University,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology
[5] Washington National Primate Research Center,The Institute of Computer Science
[6] Swedish Collegium for Advanced Study,undefined
[7] Polish Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Transcriptomic analyses are commonly used to identify differentially expressed genes between patients and controls, or within individuals across disease courses. These methods, whilst effective, cannot encompass the combinatorial effects of genes driving disease. We applied rule-based machine learning (RBML) models and rule networks (RN) to an existing paediatric Systemic Lupus Erythematosus (SLE) blood expression dataset, with the goal of developing gene networks to separate low and high disease activity (DA1 and DA3). The resultant model had an 81% accuracy to distinguish between DA1 and DA3, with unsupervised hierarchical clustering revealing additional subgroups indicative of the immune axis involved or state of disease flare. These subgroups correlated with clinical variables, suggesting that the gene sets identified may further the understanding of gene networks that act in concert to drive disease progression. This included roles for genes (i) induced by interferons (IFI35 and OTOF), (ii) key to SLE cell types (KLRB1 encoding CD161), or (iii) with roles in autophagy and NF-κB pathway responses (CKAP4). As demonstrated here, RBML approaches have the potential to reveal novel gene patterns from within a heterogeneous disease, facilitating patient clinical and therapeutic stratification.
引用
收藏
相关论文
共 50 条
  • [1] Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
    Yones, Sara A.
    Annett, Alva
    Stoll, Patricia
    Diamanti, Klev
    Holmfeldt, Linda
    Barrenas, Carl Fredrik
    Meadows, Jennifer R. S.
    Komorowski, Jan
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Prediction of Paediatric Systemic Lupus Erythematosus Patients Using Machine Learning
    Ponnusamy R.R.
    Cheak L.C.
    Ling E.C.W.
    Chin L.S.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [3] Gene expression studies in systemic lupus erythematosus
    Mandel, M.
    Achiron, A.
    LUPUS, 2006, 15 (07) : 451 - 456
  • [4] Gene expression and regulation in systemic lupus erythematosus
    Frangou, Eleni A.
    Bertsias, George K.
    Boumpas, Dimitrios T.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2013, 43 (10) : 1084 - 1096
  • [5] Data analysis supports the existence of subtypes of systemic lupus erythematosus
    Chrissie Giles
    Nature Clinical Practice Rheumatology, 2006, 2 (6): : 291 - 291
  • [6] Application of Machine Learning Models in Systemic Lupus Erythematosus
    Ceccarelli, Fulvia
    Natalucci, Francesco
    Picciariello, Licia
    Ciancarella, Claudia
    Dolcini, Giulio
    Gattamelata, Angelica
    Alessandri, Cristiano
    Conti, Fabrizio
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [7] Improving the Diagnosis of Systemic Lupus Erythematosus with Machine Learning Algorithms Based on Real-World Data
    Park, Meeyoung
    MATHEMATICS, 2024, 12 (18)
  • [8] Breast cancer prediction based on gene expression data using interpretable machine learning techniques
    Kallah-Dagadu, Gabriel
    Mohammed, Mohanad
    Nasejje, Justine B.
    Mchunu, Nobuhle Nokubonga
    Twabi, Halima S.
    Batidzirai, Jesca Mercy
    Singini, Geoffrey Chiyuzga
    Nevhungoni, Portia
    Maposa, Innocent
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Machine learning identifies clusters of longitudinal autoantibody profiles predictive of systemic lupus erythematosus disease outcomes
    Choi, May Yee
    Chen, Irene
    Clarke, Ann Elaine
    Fritzler, Marvin J.
    Buhler, Katherine A.
    Urowitz, Murray
    Hanly, John
    St-Pierre, Yvan
    Gordon, Caroline
    Bae, Sang-Cheol
    Romero-Diaz, Juanita
    Sanchez-Guerrero, Jorge
    Bernatsky, Sasha
    Wallace, Daniel J.
    Isenberg, David Alan
    Rahman, Anisur
    Merrill, Joan T.
    Fortin, Paul R.
    Gladman, Dafna D.
    Bruce, Ian N.
    Petri, Michelle
    Ginzler, Ellen M.
    Dooley, Mary Anne
    Ramsey-Goldman, Rosalind
    Manzi, Susan
    Jonsen, Andreas
    Alarcon, Graciela S.
    van Vollenhoven, Ronald F.
    Aranow, Cynthia
    Mackay, Meggan
    Ruiz-Irastorza, Guillermo
    Lim, Sam
    Inanc, Murat
    Kalunian, Kenneth
    Jacobsen, Soren
    Peschken, Christine
    Kamen, Diane L.
    Askanase, Anca
    Buyon, Jill P.
    Sontag, David
    Costenbader, Karen H.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 (07) : 927 - 936
  • [10] Systemic lupus erythematosus with high disease activity identification based on machine learning
    Wang, Da-Cheng
    Xu, Wang-Dong
    Qin, Zhen
    Fu, Lu
    Lan, You-Yu
    Liu, Xiao-Yan
    Huang, An-Fang
    INFLAMMATION RESEARCH, 2023, 72 (09) : 1909 - 1918