On the intersection of infinite geometric and arithmetic progressions

被引:0
作者
Artūras Dubickas
Jonas Jankauskas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2010年 / 41卷
关键词
arithmetic and geometric progression; fractional part; algebraic number; linear recurrence; zero multiplicity; 11B25; 11B37; 11J71; 11R04; 11R06; 12D10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the intersection G ∩ A of an infinite geometric progression G = u, uq, uq2, uq3, ..., where u > 0 and q > 1 are real numbers, and an infinite arithmetic progression A contains at most 3 elements except for two kinds of ratios q. The first exception occurs for q = r1/d, where r > 1 is a rational number and d ∈ ℕ. Then this intersection can be of any cardinality s ∈ ℕ or infinite. The other (possible) exception may occur for q = β1/d, where β > 1 is a real cubic algebraic number with two nonreal conjugates of moduli distinct from β and d ∈ ℕ. In this (cubic) case, we prove that the intersection G ∩ A contains at most 6 elements.
引用
收藏
页码:551 / 566
页数:15
相关论文
共 25 条
  • [1] Allen P.(2007)On the multiplicity of linear recurrence sequences J. Number Theory 126 212-216
  • [2] Beukers F.(1980)The multiplicity of binary recurrences Compositio Math. 80 251-267
  • [3] Beukers F.(1991)The zero-multiplicity of ternary recurrences Compositio Math. 77 165-177
  • [4] Boyd D.W.(1994)Irreducible polynomials with many roots of maximal modulus Acta Arith. 68 85-88
  • [5] Chowla S.(1961)Linear recurrences of order two Pacific J. Math. 11 833-845
  • [6] Dunton M.(2006)On the fractional parts of natural powers of a fixed number Siberian Math. J. 47 879-882
  • [7] Lewis D.J.(2001)On the Remak height, the Mahler measure and conjugate sets of algebraic numbers lying on two circles Proc. Edinburgh Math. Soc. 44 1-17
  • [8] Dubickas A.(1960) − [ Math. Zeitschr. 76 1-4
  • [9] Dubickas A.(2002)] − Annals of Math. 155 807-836
  • [10] Smyth C.J.(1962) − [ Illinois J. Math. 6 251-263