The average density of K-normal elements over finite fields

被引:0
作者
Lucas Reis
机构
[1] Universidade Federal de Minas Gerais,Departamento de Matemática
来源
Designs, Codes and Cryptography | 2023年 / 91卷
关键词
Mean value theorem; -normal elements; Finite fields; 11H60 (primary); 11N37 and 11T30 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a prime power and, for each positive integer n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, let Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^n}$$\end{document} be the finite field with qn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{n}$$\end{document} elements. Motivated by the well known concept of normal elements over finite fields, Huczynska et al. (Finite Fields Appl. 24:170-183, 2013) introduced the notion of k-normal elements. More precisely, for a given 0≤k≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le k\le n$$\end{document}, an element α∈Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathbb {F}_{q^n}$$\end{document} is k-normal over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} if the Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}-vector space generated by the elements in the set {α,αq,…,αqn-1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\alpha , \alpha ^q, \ldots , \alpha ^{q^{n-1}}\}$$\end{document} has dimension n-k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-k$$\end{document}. The case k=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=0$$\end{document} recovers the notion of normal elements. If q and k are fixed, one may consider the number λq,n,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{q, n, k}$$\end{document} of elements α∈Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathbb {F}_{q^n}$$\end{document} that are k-normal over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} and the density λq,k(n)=λq,n,kqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{q, k}(n)=\frac{\lambda _{q, n, k}}{q^n}$$\end{document} of such elements in Fqn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q^n}$$\end{document}. In this paper we prove that, for arbitrary q and k, the arithmetic function λq,k(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{q, k}(n)$$\end{document} has positive mean value, in the sense that the limit limt→+∞1t∑1≤n≤tλq,k(n),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim \limits _{t\rightarrow +\infty }\frac{1}{t}\sum _{1\le n\le t}\lambda _{q, k}(n), \end{aligned}$$\end{document}exists and it is positive.
引用
收藏
页码:3285 / 3292
页数:7
相关论文
共 21 条
  • [1] Aguirre JJR(2021)Existence of primitive Finite Fields Appl. 73 1750006-28
  • [2] Neumann VGL(2022)-normal elements in finite fields Des. Codes Cryptogr. 16 23-150
  • [3] Aguirre JJR(2017)About r-primitive and k-normal elements in finite fields J. Algebra Appl. 6 141-183
  • [4] Carvalho C(2000)Some notes on the k-normal elements and k-normal polynomials over finite fields Finite Fields Appl. 3 170-1480
  • [5] Neumann VGL(1997)On the density of normal bases in finite fields Finite Fields Appl. 24 1459-492
  • [6] Alizadeh M(2013)Density of normal elements Finite Fields Appl. 87 485-269
  • [7] Frandsen GS(2019)Existence and properties of Des. Codes Cryptogr. 26 238-822
  • [8] Gao S(1983)-normal elements over finite fields Can. Math. Bull. 51 805-1027
  • [9] Panario D(2018)Variations of the primitive normal basis theorem Finite Fields Appl. 35 1013-undefined
  • [10] Huczynska S(2019)Majorations explicites pour le nombre de diviseurs de Rev. Mat. Iberoam. 17 undefined-undefined