Fixed points for modified fuzzy ψ-contractive set-valued mappings in fuzzy metric spaces

被引:0
作者
Shihuang Hong
机构
[1] Hangzhou Dianzi University,Institute of Applied Mathematics and Engineering Computations
来源
Fixed Point Theory and Applications | / 2014卷
关键词
fixed point; fuzzy contraction; set-valued mapping; fuzzy metric spaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce a new concept of fuzzy α-ψ-contractive type set-valued mappings and establish fixed-point theorems for such mappings in complete fuzzy metric spaces. Starting from the fuzzy version of the Banach contraction principle, the presented theorems extend, generalize and improve many existing results in the literature. Moreover, the results are supported by examples.
引用
收藏
相关论文
共 33 条
[1]  
Gregori V(2002)On fixed-point theorems in fuzzy metric spaces Fuzzy Sets Syst 125 245-252
[2]  
Sapena A(2008)Fuzzy Fuzzy Sets Syst 159 739-744
[3]  
Mihet D(2009)-contractive mappings in non-Archimedean fuzzy metric spaces Chaos Solitons Fractals 42 146-154
[4]  
Ćirić LB(2002)Some new results for Banach contractions and Edelstein contractive mappings on fuzzy metric spaces Autom. Comput. Appl. Math 11 125-131
[5]  
Radu V(2013)Some remarks on the probabilistic contractions on fuzzy Menger spaces Fuzzy Sets Syst 222 115-119
[6]  
Wang S(2013)Answers to some open questions on fuzzy Fuzzy Sets Syst 222 108-114
[7]  
Wardowski D(2011)-contractions in fuzzy metric spaces Fuzzy Sets Syst 162 84-90
[8]  
Vetro C(2011)Fuzzy contractive mappings and fixed points in fuzzy metric spaces Nonlinear Anal 74 5475-5479
[9]  
Zhu X-H(2012)Fixed points in weak non-Archimedean fuzzy metric spaces Fuzzy Sets Syst 200 65-83
[10]  
Xiao J-Z(2004)Note on ‘Coupled fixed point theorems for contractions in fuzzy metric spaces’ J. Fuzzy Math 12 137-146