Characterization of quantum circulant networks having perfect state transfer

被引:0
作者
Milan Bašić
机构
[1] University of Niš,Faculty of Sciences and Mathematics
来源
Quantum Information Processing | 2013年 / 12卷
关键词
Circulant networks; Quantum spin networks; Perfect state transfer;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we answer the question of when circulant quantum spin networks with nearest-neighbor couplings can give perfect state transfer. The network is described by a circulant graph G, which is characterized by its circulant adjacency matrix A. Formally, we say that there exists a perfect state transfer (PST) between vertices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a,b\in V(G)}$$\end{document} if |F(τ)ab| = 1, for some positive real number τ, where F(t) = exp(i At). Saxena et al. (Int J Quantum Inf 5:417–430, 2007) proved that |F(τ)aa| = 1 for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in V(G)}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau\in \mathbb {R}^+}$$\end{document} if and only if all eigenvalues of G are integer (that is, the graph is integral). The integral circulant graph ICGn (D) has the vertex set Zn = {0, 1, 2, . . . , n − 1} and vertices a and b are adjacent if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gcd(a-b,n)\in D}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D \subseteq \{d : d \mid n, \ 1 \leq d < n\}}$$\end{document} . These graphs are highly symmetric and have important applications in chemical graph theory. We show that ICGn (D) has PST if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n\in 4\mathbb {N}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D=\widetilde{D_3} \cup D_2\cup 2D_2\cup 4D_2\cup \{n/2^a\}}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{D_3}=\{d\in D\ |\ n/d\in 8\mathbb {N}\}, D_2= \{d\in D\ |\ n/d\in 8\mathbb {N}+4\}{\setminus}\{n/4\}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a\in\{1,2\}}$$\end{document} . We have thus answered the question of complete characterization of perfect state transfer in integral circulant graphs raised in Angeles-Canul et al. (Quantum Inf Comput 10(3&4):0325–0342, 2010). Furthermore, we also calculate perfect quantum communication distance (distance between vertices where PST occurs) and describe the spectra of integral circulant graphs having PST. We conclude by giving a closed form expression calculating the number of integral circulant graphs of a given order having PST.
引用
收藏
页码:345 / 364
页数:19
相关论文
共 51 条
  • [1] Christandl M.(2004)Perfect state transfer in quantum spin networks Phys. Rev. Lett. 92 187902-618
  • [2] Datta N.(2005)Perfect transfer of arbitrary states in quantum spin networks Phys. Rev. A 71 032312-430
  • [3] Ekert A.(2003)On mixing of continuous–time quantum walks on some circulant graphs Quantum Inf. Comput. 3 611-1121
  • [4] Landahl A.J.(2007)Parameters of integral circulant graphs and periodic quantum dynamics Int. J. Quantum Inf. 5 417-312
  • [5] Christandl M.(2009)Perfect state transfer in integral circulant graphs Appl. Math. Lett. 22 1117-0342
  • [6] Datta N.(2011)Further results on the perfect state transfer in integral circulant graphs Comput. Math. Appl. 61 300-1427
  • [7] Dorlas T.C.(2010)Perfect state transfer, integral circulants and join of graphs Quantum Inf. Comput. 10 0325-1445
  • [8] Ekert A.(2009)Quantum state transfer through a qubit network with energy shifts and fluctuations Int. J. Quantum Inf. 7 1417-158
  • [9] Kay A.(2008)Perfect state transfer over distance-regular spin networks, 2007 Phys. Rev. A 77 022315-243
  • [10] Landahl A.J.(2009)On quantum perfect state transfer in weighted join graphs Int. J. Quantum Inf. 7 1429-12