Geometric characterization of the generalized Lommel–Wright function in the open unit disc

被引:0
作者
Hanaa M. Zayed
Teodor Bulboacă
机构
[1] Menoufia University,Department of Mathematics and Computer Science, Faculty of Science
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
来源
Journal of Inequalities and Applications | / 2024卷
关键词
Analytic; Univalent; Starlike; Convex; Convolution; Pochhammer symbol; Generalized Lommel–Wright function; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
The present investigation aims to examine the geometric properties of the normalized form of the combination of generalized Lommel–Wright function Jλ,μν,m(z):=Γm(λ+1)Γ(λ+μ+1)22λ+μz1−(ν/2)−λJλ,μν,m(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{J}_{\lambda ,\mu}^{\nu ,m}(z):=\Gamma ^{m}(\lambda +1) \Gamma (\lambda +\mu +1)2^{2\lambda +\mu}z^{1-(\nu /2)-\lambda} \mathcal{J}_{\lambda ,\mu }^{\nu ,m}(\sqrt{z})$\end{document}, where the function Jλ,μν,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{J}_{\lambda ,\mu}^{\nu ,m}$\end{document} satisfies the differential equation Jλ,μν,m(z):=(1−2λ−ν)Jλ,μν,m(z)+z(Jλ,μν,m(z))′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{J}_{\lambda ,\mu}^{\nu ,m}(z):=(1-2\lambda -\nu )J_{ \lambda ,\mu}^{\nu ,m}(z)+z (J_{\lambda ,\mu }^{\nu ,m}(z) )^{\prime}$\end{document} with Jν,λμ,m(z)=(z2)2λ+ν∑k=0∞(−1)kΓm(k+λ+1)Γ(kμ+ν+λ+1)(z2)2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ J_{\nu ,\lambda}^{\mu ,m}(z)= \biggl(\frac{z}{2} \biggr)^{2\lambda + \nu} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\Gamma ^{m} (k+\lambda +1 )\Gamma (k\mu +\nu +\lambda +1 )} \biggl(\frac{z}{ 2} \biggr)^{2k} $$\end{document} for λ∈C∖Z−\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in \mathbb{C}\setminus \mathbb{Z}^{-}$\end{document}, Z−:={−1,−2,−3,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{Z}^{-}:= \{ -1,-2,-3,\ldots \}$\end{document}, m∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m\in \mathbb{N}$\end{document}, ν∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\nu \in \mathbb{C}$\end{document}, and μ∈N0:=N∪{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu \in \mathbb{N}_{0}:=\mathbb{N}\cup \{0\}$\end{document}. In particular, we employ a new procedure using mathematical induction, as well as an estimate for the upper and lower bounds for the gamma function inspired by Li and Chen (J. Inequal. Pure Appl. Math. 8(1):28, 2007), to evaluate the starlikeness and convexity of order α, 0≤α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leq \alpha <1$\end{document}. Ultimately, we discuss the starlikeness and convexity of order zero for Jλ,μν,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathfrak{J}_{\lambda ,\mu} ^{\nu ,m}$\end{document}, and it turns out that they are useful to extend the range of validity for the parameter λ to λ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \geq 0$\end{document} where the main concept of the proofs comes from some technical manipulations given by Mocanu (Libertas Math. 13:27–40, 1993). Our results improve, complement, and generalize some well-known (nonsharp) estimates.
引用
收藏
相关论文
共 56 条
[1]  
Aktaş I.(2017)Bounds for radii of starlikeness of some Results Math. 72 947-963
[2]  
Baricz Á.(2018)-Bessel functions Turk. J. Math. 42 211-226
[3]  
Aktaş I.(2020)Bounds for radii of starlikeness and convexity of some special functions Ramanujan J. 51 275-295
[4]  
Baricz Á.(2017)Geometric and monotonic properties of hyper-Bessel functions Math. Inequal. Appl. 20 825-843
[5]  
Singh S.(2020)Bounds for the radii of univalence of some special functions Bull. Korean Math. Soc. 57 355-369
[6]  
Aktaş I.(2021)Bounds for radii of convexity of some Miskolc Math. Notes 22 5-15
[7]  
Baricz Á.(2006)-Bessel functions Mathematica (Cluj) 48(71) 127-136
[8]  
Singh S.(2010)Radii of Integral Transforms Spec. Funct. 21 641-653
[9]  
Aktaş I.(1986)-starlikeness of order Rev. Téc. Fac. Ing., Univ. Zulia 9 33-40
[10]  
Baricz Á.(2019) of Struve and Lommel functions Notes Number Theory Discrete Math. 25 1-7