Positivity constraints on the low-energy constants of the chiral pion–nucleon Lagrangian

被引:0
作者
Juan José Sanz-Cillero
De-Liang Yao
Han-Qing Zheng
机构
[1] IFT-UAM/CSIC Universidad Autónoma de Madrid,Departamento de Física Teórica and Instituto de Física Teórica
[2] Forschungszentrum Jülich,Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics
[3] Peking University,Department of Physics and State Key Laboratory of Nuclear Physics and Technology
[4] Collaborative Innovation Center of Quantum Matter,undefined
来源
The European Physical Journal C | 2014年 / 74卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Positivity constraints on the pion–nucleon scattering amplitude are derived in this article with the help of general S-matrix arguments, such as analyticity, crossing symmetry, and unitarity, in the upper part of the Mandelstam triangle, R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}$$\end{document}. Scanning inside the region R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}$$\end{document}, the most stringent bounds on the chiral low-energy constants of the pion–nucleon Lagrangian are determined. When just considering the central values of the fit results from covariant baryon chiral perturbation theory using the extended-on-mass-shell scheme, it is found that these bounds are well respected numerically both at the O(p3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(p^3)$$\end{document} and the O(p4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(p^4)$$\end{document} level. Nevertheless, when taking the errors into account, only the O(p4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(p^4)$$\end{document} bounds are obeyed in the full error interval, while the bounds on the O(p3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(p^3)$$\end{document} fits are slightly violated. If one disregards the loop contributions, the bounds always fail in certain regions of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}$$\end{document}. Thus, at a given chiral order these terms are not numerically negligible and one needs to consider all possible contributions, i.e., both tree-level and loop diagrams.We have provided the constraints for special points in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}$$\end{document} where the bounds are nearly optimal in terms of just a few chiral couplings, which can easily be implemented and employed to constrain future analyses. Some issues concerned with calculations with an explicit Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} resonance are also discussed.
引用
收藏
相关论文
共 69 条
[1]  
Weinberg S(1979)undefined Physica A 96 327-undefined
[2]  
Gasser J(1984)undefined Annals Phys. 158 142-undefined
[3]  
Leutwyler H(1985)undefined Nucl. Phys. B 250 465-undefined
[4]  
Gasser J(1988)undefined Nucl. Phys. B 307 779-undefined
[5]  
Leutwyler H(1991)undefined Phys. Lett. B 255 558-undefined
[6]  
Gasser J(1992)undefined Nucl. Phys. B 388 315-undefined
[7]  
Sainio ME(1999)undefined Eur. Phys. J. C 9 643-undefined
[8]  
Svarc A(1999)undefined Phys. Rev. D 60 114038-undefined
[9]  
Jenkins EE(2003)undefined Phys. Rev. D 68 056005-undefined
[10]  
Manohar AV(1995)undefined Phys. Rev. D 51 1093-undefined