Some Structure Theorems for Atomistic Algebraic Lattices

被引:0
作者
S. Radeleczki
机构
[1] University of Miskolc,Institute of Mathematics
来源
Acta Mathematica Hungarica | 2000年 / 86卷
关键词
Direct Product; Structure Theorem; Congruence Lattice; Algebraic Lattice; Irreducible Lattice;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that any atomistic algebraic lattice is a direct product of subdirectly irreducible lattices iff its congruence lattice is an atomic Stone lattice. We define on the set A(L) of all atoms of an atomistic algebraic lattice L a relation R as follows: for a, bA(L), (a, b) R ⇔ θ(0, a) ∧ θ(0, b) ≠ ▵Con L. We prove that Con L is a Stone lattice iff R is transitive and we give a characterization of Cen (L) using R. We also give a characterization of weakly modular atomistic algebraic lattices.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 6 条
[1]  
Bandelt H.-J.(1981)Tolerance relations on lattices Bull. Austral. Soc. 23 367-381
[2]  
Grätzer G.(1997)Isotone maps as maps of congruences. I Acta Math. Hungar. 75 105-135
[3]  
Lakser H.(1991)Lattices whose congruence lattices satisfy Lee's identities Demonstratio Math. XXIV 247-261
[4]  
Schmidt E. T.(1995)Direct decompositions of atomistic algebraic lattices Algebra Universalis 33 127-135
[5]  
Haviar M.(undefined)undefined undefined undefined undefined-undefined
[6]  
Libkin L.(undefined)undefined undefined undefined undefined-undefined