Algorithms for Contractibility of Compressed Curves on 3-Manifold Boundaries

被引:0
作者
Erin Wolf Chambers
Francis Lazarus
Arnaud de Mesmay
Salman Parsa
机构
[1] Saint Louis University,
[2] G-SCOP,undefined
[3] CNRS,undefined
[4] UGA,undefined
[5] LIGM,undefined
[6] CNRS,undefined
[7] Univ. Gustave Eiffel,undefined
[8] ESIEE Paris,undefined
来源
Discrete & Computational Geometry | 2023年 / 70卷
关键词
3-Manifolds; Surfaces; Computational topology; Contractibility; Compressed curves; 57M05; 68R99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that the problem of deciding contractibility of an arbitrary closed curve on the boundary of a 3-manifold is in NP. We emphasize that the manifold and the curve are both inputs to the problem. Moreover, our algorithm also works if the curve is given as a compressed word. Previously, such an algorithm was known for simple (non-compressed) curves, and, in very limited cases, for curves with self-intersections. Furthermore, our algorithm is fixed-parameter tractable in the size of the input 3-manifold. As part of our proof, we obtain new polynomial-time algorithms for compressed curves on surfaces, which we believe are of independent interest. We provide a polynomial-time algorithm which, given an orientable surface and a compressed loop on the surface, computes a canonical form for the loop as a compressed word. In particular, contractibility of compressed curves on surfaces can be decided in polynomial time; prior published work considered only constant genus surfaces. More generally, we solve the following normal subgroup membership problem in polynomial time: given an arbitrary orientable surface, a compressed closed curve γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, and a collection of disjoint normal curves Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}, there is a polynomial-time algorithm to decide if γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} lies in the normal subgroup generated by components of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document} in the fundamental group of the surface after attaching the curves to a basepoint.
引用
收藏
页码:323 / 354
页数:31
相关论文
共 33 条
[1]  
Agol I(2006)The computational complexity of knot genus and spanning area Trans. Am. Math. Soc. 358 3821-3850
[2]  
Hass J(2021)Simplifying triangulations Discrete Comput. Geom. 66 1-11
[3]  
Thurston W(2014)A new approach to crushing Discrete Comput. Geom. 52 116-139
[4]  
Bell MC(2016)-manifold triangulations Geom. Topol. 20 1061-1083
[5]  
Burton BA(1912)On the complexity of immersed normal surfaces Math. Ann. 72 413-421
[6]  
Burton BA(2019)Transformation der Kurven auf zweiseitigen Flächen J. ACM 66 #45-840
[7]  
Colin de Verdière É(2007)Computing the geometric intersection number of curves J. Eur. Math. Soc. 9 801-863
[8]  
de Mesmay A(2013)On the complexity of braids Discrete Comput. Geom. 49 823-211
[9]  
Dehn M (1999)Tracing compressed curves in triangulated surfaces J. ACM 46 185-17
[10]  
Despré V(2003)The computational complexity of knot and link problems Discrete Comput. Geom. 29 1-168