Representations of a Group of Linear Operators in a Banach Space on the Set of Entire Vectors of its Generator

被引:0
作者
V. M. Horbachuk
M. L. Horbachuk
机构
[1] Ukrainian National Technical University,“Kyiv Polytechnic Institute”
[2] Ukrainian National Academy of Sciences,Institute of Mathematics
来源
Ukrainian Mathematical Journal | 2015年 / 67卷
关键词
Banach Space; Linear Operator; Cauchy Problem; Entire Function; Vector Function;
D O I
暂无
中图分类号
学科分类号
摘要
For a strongly continuous one-parameter group {U(t)}t ∈(−∞,∞) of linear operators in a Banach space B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{B} $$\end{document} with generator A, we prove the existence of a set B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{B} $$\end{document}1 dense in B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{B} $$\end{document} on the elements x of which the function U(t)x admits an extension to an entire B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{B} $$\end{document}-valued vector function. The description of the vectors from B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{B} $$\end{document}1 for which this extension has a finite order of growth and a finite type is presented. It is also established that the inclusion x ∈B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{B} $$\end{document}1 is a necessary and sufficient condition for the existence of the limit limn→1I+tAnnx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ { \lim}_{n\to 1}{\left(I+\frac{tA}{n}\right)}^nx $$\end{document} and this limit is equal to U(t)x.
引用
收藏
页码:668 / 679
页数:11
相关论文
共 11 条
[1]  
Peano G(1887)Integrazione per serie delle equazioni differenziali lineari Atti Reale Acad. Sci. Torino 22 293-302
[2]  
Nathan DS(1935)One-parameter groups of transformations in abstract vector spaces Duke Math. J. 1 518-526
[3]  
Nagumo M(1936)Einige analytische Untersuchungen in linearen, metrischen Ringen Jpn. J. Math. 13 59-80
[4]  
Yosida K(1936)On the group embedded in the metrical complete ring Jpn. J. Math. 13 7-26
[5]  
Stone MH(1932)On one-parameter unitary groups in Hilbert space Ann. Math. 33 643-648
[6]  
Gel’fand IM(1939)On one-parameter groups of operators in a normed space Dokl. Akad. Nauk SSSR 25 713-718
[7]  
Gorbachuk M(2012)On extensions and restrictions of semigroups of linear operators in a Banach space and their applications Math. Nachr. 285 1860-1879
[8]  
Gorbachuk V(2002)On density of some sets of infinitely differentiable vectors of a closed operator on a Banach space Meth. Funct. Anal. Topol. 8 23-29
[9]  
Gorbachuk ML(1924)Le principe de Huygens Bull. Soc. Math. France 52 610-640
[10]  
Mokrousov YG(undefined)undefined undefined undefined undefined-undefined