On a theorem by Mather and Aubry-Mather sets for planar Hamiltonian systems

被引:0
作者
Meiyue Jiang
机构
[1] Peking University,Department of Mathematics
来源
Science in China Series A: Mathematics | 1999年 / 42卷
关键词
Aubry-Mather set; planar Hamiltonian system;
D O I
暂无
中图分类号
学科分类号
摘要
A result due to Mather on the existence of Aubry-Mather sets for superlinear positive definite Lagrangian systems is generalized in one-dimensional case. Applications to existence of Aubry-Mather sets of planar Hamiltonian systems are given.
引用
收藏
页码:1121 / 1128
页数:7
相关论文
共 10 条
  • [1] Mather J. N.(1982)Existence of quasiperiodic orbit for twist homeomorphisms of the annulus Topology 21 457-457
  • [2] Aubry S.(1983)The discrete Frenkel Kontorova model and its application Physica 8D 381-381
  • [3] LeDaeron P. Y.(1987)Mather sets for plane Hamiltonian systems ZAMP 38 791-791
  • [4] Denzler J.(1993)Mather sets for superlinear plane Hamiltonian systems Dynamic Systems and Applications 2 189-189
  • [5] Jiang M. Y.(1993)Mather sets for superlinear Duffing equations Science in China, Ser. A 36 524-524
  • [6] Pei M. L.(1994)Mather sets for finite twist maps of a cylinder and semilinear Duffing equations J. Diff. Equa 113 106-106
  • [7] Pei M. L.(1991)Action minimizing invariant measures for positive definite Lagrangian systems Math. Z 207 169-169
  • [8] Pei M. L.(1986)Recent developments in the theory of Hamiltonian systems SI AM Review 28 459-459
  • [9] Mather J. N.(undefined)undefined undefined undefined undefined-undefined
  • [10] Moser J.(undefined)undefined undefined undefined undefined-undefined