On the Lie algebras, generalized symmetries and darboux transformations of the fifth-order evolution equations in shallow water

被引:0
作者
Shoufu Tian
Yufeng Zhang
Binlu Feng
Hongqing Zhang
机构
[1] China University of Mining and Technology,Department of Mathematics
[2] Weifang University,School of Mathematics and Information Sciences
[3] Dalian University of Technology,School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2015年 / 36卷
关键词
Generalized symmetries; Darboux transformations; Analytical solutions; 35Q51; 35Q53; 35C99; 68W30; 74J35;
D O I
暂无
中图分类号
学科分类号
摘要
By considering the one-dimensional model for describing long, small amplitude waves in shallow water, a generalized fifth-order evolution equation named the Olver water wave (OWW) equation is investigated by virtue of some new pseudo-potential systems. By introducing the corresponding pseudo-potential systems, the authors systematically construct some generalized symmetries that consider some new smooth functions {Xiβ}β=1,2,··· ,Ni=1,2,··· ,n depending on a finite number of partial derivatives of the nonlocal variables vβ and a restriction i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{i,\alpha ,\beta } {\left( {\tfrac{{\partial \xi ^i }} {{\partial v^\beta }}} \right) + \left( {\tfrac{{\partial \eta ^\alpha }} {{\partial v^\beta }}} \right)} \ne 0$$\end{document} ≠ 0, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{i,\alpha ,\beta } {\left( {\tfrac{{\partial G^\alpha }} {{\partial v^\beta }}} \right)} \ne 0$$\end{document}. Furthermore, the authors investigate some structures associated with the Olver water wave (AOWW) equations including Lie algebra and Darboux transformation. The results are also extended to AOWW equations such as Lax, Sawada-Kotera, Kaup-Kupershmidt, Itˆo and Caudrey-Dodd-Gibbon-Sawada-Kotera equations, et al. Finally, the symmetries are applied to investigate the initial value problems and Darboux transformations.
引用
收藏
页码:543 / 560
页数:17
相关论文
共 56 条
[1]  
Anderson I. M.(1993)Internal, external and generalized symmetries Adv. Math. 100 53-100
[2]  
Kamran N.(2006)Temuerchaolu and Anco, S., New conservation laws obtained directly from symmetry action on a known conservation law J. Math. Anal. Appl. 322 233-250
[3]  
Olver P. J.(2014)Nonclassical analysis of the nonlinear Kompaneets equation J. Eng. Math. 84 87-97
[4]  
Bluman G. W.(1986)Pseudo-spherical surfaces and evolution equations Stud. Appl. Math. 74 55-83
[5]  
Bluman G. W.(2009)Lie symmetry group of the nonisospectral Kadomtsev-Petviashvili equation Z. Naturforsch A. 62 8-14
[6]  
Tian S. F.(1978)The prolongation structure of a higher order Korteweg-de Vries equation Proc. R. Soc. Lond. A 358 287-296
[7]  
Yang Z. Z.(2002)Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method J. Phys. A: Math. Gen. 35 6853-6872
[8]  
Chern S. S.(1992)New nonlocal symmetries with pseudopotentials J. Phys. A: Math. Gen. 25 L981-L986
[9]  
Tenenblat K.(1993)Nonlocal symmetries of the KdV equation J. Math. Phys. 26 193-205
[10]  
Chen Y.(2007)Symmetries and invariant solutions for the geometric heat flows J. Phys. A: Math. Theor. 40 9343-9360