Game-theoretic optimal portfolios in continuous time

被引:0
作者
Alex Garivaltis
机构
[1] Northern Illinois University,Department of Economics
来源
Economic Theory Bulletin | 2019年 / 7卷
关键词
Portfolio choice; Constant rebalanced portfolios; Continuous-time Kelly rule; Minimax; C44; D80; D81; G11;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a two-person trading game in continuous time where each player chooses a constant rebalancing rule b that he must adhere to over [0, t]. If Vt(b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_t(b)$$\end{document} denotes the final wealth of the rebalancing rule b, then Player 1 (the “numerator player”) picks b so as to maximize E[Vt(b)/Vt(c)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E[V_t(b)/V_t(c)]$$\end{document}, while Player 2 (the “denominator player”) picks c so as to minimize it. In the unique Nash equilibrium, both players use the continuous-time Kelly rule b∗=c∗=Σ-1(μ-r1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^*=c^*=\varSigma ^{-1}(\mu -r\mathbf 1 )$$\end{document}, where Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} is the covariance of instantaneous returns per unit time, μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is the drift vector, and 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf 1 $$\end{document} is a vector of ones. Thus, even over very short intervals of time [0, t], the desire to perform well relative to other traders leads one to adopt the Kelly rule, which is ordinarily derived by maximizing the asymptotic exponential growth rate of wealth. Hence, we find agreement with Bell and Cover’s ( Manag Sci 34(6):724–733, 1988) result in discrete time.
引用
收藏
页码:235 / 243
页数:8
相关论文
共 5 条
  • [1] Bell R(1980)Competitive optimality of logarithmic investment Math. Oper. Res. 5 161-166
  • [2] Cover TM(1988)Game-theoretic optimal portfolios Manag. Sci. 34 724-733
  • [3] Bell R(1956)A new interpretation of information rate Bell Syst. Tech. J. 35 917-926
  • [4] Cover TM(undefined)undefined undefined undefined undefined-undefined
  • [5] Kelly J(undefined)undefined undefined undefined undefined-undefined