On Multiplicities of Maximal Weights of sl̂(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat {sl}(n)$\end{document}-Modules

被引:0
作者
Rebecca L. Jayne
Kailash C. Misra
机构
[1] Hampden-Sydney College,Department of Mathematics
[2] North Carolina State University,undefined
关键词
Affine Lie algebras; Representations; Maximal weights; Crystal base; Lattice paths; Avoiding permutations; 17B65; 17B67; 05E10;
D O I
10.1007/s10468-014-9470-2
中图分类号
学科分类号
摘要
We determine explicitly the maximal dominant weights for the integrable highest weight sl̂(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widehat {sl}(n)$\end{document}-modules V((k − 1)Λ0 + Λs), 0 ≤ s ≤ n − 1, k ≥ 2. We give a conjecture for the number of maximal dominant weights of V(kΛ0) and prove it in some low rank cases. We give an explicit formula in terms of lattice paths for the multiplicities of a family of maximal dominant weights of V(kΛ0). We conjecture that these multiplicities are equal to the number of certain pattern avoiding permutations. We prove that the conjecture holds for k = 2 and give computational evidence for the validity of this conjecture for k > 2.
引用
收藏
页码:1303 / 1321
页数:18
相关论文
共 11 条
[1]  
Barshevsky O.(2013)A non-recursive criterion for weights of a highest-weight module for an affine Lie algebra Israel J. Math. 197 237-261
[2]  
Fayers M.(1993)Some combinatorial properties of Schubert polynomials J. Alg. Comb. 2 345-374
[3]  
Schaps M.(1991)Combinatorics of representations of $U_{q}\left (\widehat {sl}(n) \right )$Uqsl̂(n) at q=0 Commun. Math. Phys. 136 543-566
[4]  
Billey SC(2009)Catalan numbers and level 2 weight structures of $A^{(1)}_{p-1}$Ap−1(1) RIMS Kǒkyǔroku Bessatsu B11 145-154
[5]  
Jockusch W(undefined)undefined undefined undefined undefined-undefined
[6]  
Stanley RP(undefined)undefined undefined undefined undefined-undefined
[7]  
Jimbo M(undefined)undefined undefined undefined undefined-undefined
[8]  
Misra KC(undefined)undefined undefined undefined undefined-undefined
[9]  
Miwa T(undefined)undefined undefined undefined undefined-undefined
[10]  
Okado M(undefined)undefined undefined undefined undefined-undefined