Photoluminescence, Optical, and Electrical Properties of Bis(8-Hydroxyquinoline) Zinc and Tris-(8-Hydroxyquinoline) Aluminum Organometallics and Their Films

被引:0
|
作者
Ahmad A. Ahmad
Ihsan A. Aljarrah
Qais M. Al-Bataineh
Riad Ababneh
Ahmad Telfah
机构
[1] Jordan University of Science and Technology,Department of Physical Sciences
[2] Leibniz Institut für Analytische Wissenschaften‐ISAS‐e.V.,Experimental Physics
[3] TU Dortmund University,Department of Physics
[4] Yarmouk University (YU),Nanotechnology Center
[5] The University of Jordan,Department of Physics
[6] University of Nebraska at Omaha,undefined
来源
Journal of Electronic Materials | 2024年 / 53卷
关键词
Organometallics; bis(8-hydroxyquinoline) zinc (ZnQ; ); tris-(8-hydroxyquinoline) aluminum (AlQ; ); poly(methyl methacrylate) (PMMA); photoluminescence emission; intra-ligand charge-transfer (ILCT);
D O I
暂无
中图分类号
学科分类号
摘要
Bis(8-hydroxyquinoline) zinc (ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{ZnQ}}_{2}$$\end{document}) and tris-(8-hydroxyquinoline) aluminum (AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document}) organometallics have been synthesized and incorporated into poly(methyl methacrylate) (PMMA) films for potential use in green-emitting OLED applications. The ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{ZnQ}}_{2}$$\end{document} and AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document} organometallics were prepared using an acid–base co-precipitation technique. Fourier-transform infrared spectroscopy and x-ray diffraction patterns were utilized to confirm the formation of ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{ZnQ}}_{2}$$\end{document}, AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document}, and ZnQ2–AlQ3 compounds. UV–Vis spectroscopy analysis revealed that PMMA/ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PMMA}/\mathrm{ZnQ}}_{2}$$\end{document}, PMMA/AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PMMA}/{\mathrm{AlQ}}_{3}$$\end{document}, and PMMA/(ZnQ2–AlQ3) composite solutions exhibited two primary transition bands in the range of approximately 330 nm and 380 nm, corresponding to the π–π* and n–π* transition bands, respectively. The average electrical conductivity of the PMMA/ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PMMA}/\mathrm{ZnQ}}_{2}$$\end{document} composite film was measured as 1.19 μS/cm, while the PMMA/AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PMMA}/{\mathrm{AlQ}}_{3}$$\end{document} composite film displayed a conductivity of 1.56 μS/cm, indicating that the intra-ligand charge-transfer of electrons in AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document} was higher than that in Znq_2. Additionally, photoluminescence (PL) emission peaks for the PMMA/ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PMMA}/\mathrm{ZnQ}}_{2}$$\end{document}, PMMA/AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PMMA}/{\mathrm{AlQ}}_{3}$$\end{document}, and PMMA/(ZnQ2–AlQ3) composite solutions were observed at wavelengths of 522 nm, 505 nm, and 509 nm, respectively, confirming their potential suitability for use in green-emitting OLEDs.
引用
收藏
页码:338 / 346
页数:8
相关论文
共 50 条
  • [31] Growth and characterization of tris(8-hydroxyquinoline)-aluminum molecular films
    Jan, Da-Jeng
    Wang, Sheng-Shin
    Tang, Shiow-Jing
    Lin, Ku-Yen
    Yang, Jiun-Jie
    Shen, Ji-Lin
    Chiu, Kuan-Cheng
    THIN SOLID FILMS, 2011, 520 (03) : 1005 - 1009
  • [32] High photoluminescence and photoswitch of bis(8-hydroxyquinoline) zinc nanoribbons
    Wang, Xiuhua
    Shao, Mingwang
    Liu, Li
    SYNTHETIC METALS, 2010, 160 (7-8) : 718 - 721
  • [33] Optical properties of amorphous and crystalline tris(8-hydroxyquinoline) indium films
    El-Menyawy, E. M.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 683 : 393 - 398
  • [34] Optical properties of amorphous and crystalline tris(8-hydroxyquinoline) indium films
    El-Menyawy, E.M.
    Journal of Alloys and Compounds, 2016, 683 : 393 - 398
  • [35] Blue electroluminescence from tris-(8-hydroxyquinoline) aluminum thin film
    Xu, XL
    Chen, XH
    Hou, YB
    Xu, Z
    Yang, XH
    Yin, SG
    Wang, ZJ
    Xu, XR
    Lau, SP
    Tay, BK
    CHEMICAL PHYSICS LETTERS, 2000, 325 (04) : 420 - 424
  • [36] Femtosecond depolarization dynamics of tris(8-hydroxyquinoline) aluminum films
    Ogawa, N.
    Miyata, A.
    Tamaru, H.
    Suzuki, T.
    Shimada, T.
    Hasegawa, T.
    Saiki, K.
    Miyano, K.
    CHEMICAL PHYSICS LETTERS, 2008, 450 (4-6) : 335 - 339
  • [37] Research of the emission quenching of tris-(8-hydroxyquinoline) aluminum by silver nanoprisms
    Ye, Song
    Yu, Jianli
    Wang, Xiangxian
    Xu, Mingkun
    Hou, Yidong
    Zhang, Zhiyou
    Du, Jinglei
    Guangxue Xuebao/Acta Optica Sinica, 2014, 34 (11):
  • [38] The effects of crystal structure on optical absorption/photoluminescence of bis(8-hydroxyquinoline)zinc
    Xu, BS
    Hao, YY
    Wang, H
    Zhou, HF
    Liu, XG
    Chen, MW
    SOLID STATE COMMUNICATIONS, 2005, 136 (06) : 318 - 322
  • [39] DFT Study of Paramagnetic Adducts of Tris-(8-hydroxyquinoline)aluminum (III)
    McKenzie, Iain
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (48): : 12759 - 12763
  • [40] Surface Raman spectroscopy of the interface of tris-(8-hydroxyquinoline) aluminum with Mg
    Davis, Robert J.
    Pemberton, Jeanne E.
    Journal of the American Chemical Society, 2009, 131 (29): : 10009 - 10014