Photoluminescence, Optical, and Electrical Properties of Bis(8-Hydroxyquinoline) Zinc and Tris-(8-Hydroxyquinoline) Aluminum Organometallics and Their Films

被引:0
作者
Ahmad A. Ahmad
Ihsan A. Aljarrah
Qais M. Al-Bataineh
Riad Ababneh
Ahmad Telfah
机构
[1] Jordan University of Science and Technology,Department of Physical Sciences
[2] Leibniz Institut für Analytische Wissenschaften‐ISAS‐e.V.,Experimental Physics
[3] TU Dortmund University,Department of Physics
[4] Yarmouk University (YU),Nanotechnology Center
[5] The University of Jordan,Department of Physics
[6] University of Nebraska at Omaha,undefined
来源
Journal of Electronic Materials | 2024年 / 53卷
关键词
Organometallics; bis(8-hydroxyquinoline) zinc (ZnQ; ); tris-(8-hydroxyquinoline) aluminum (AlQ; ); poly(methyl methacrylate) (PMMA); photoluminescence emission; intra-ligand charge-transfer (ILCT);
D O I
暂无
中图分类号
学科分类号
摘要
Bis(8-hydroxyquinoline) zinc (ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{ZnQ}}_{2}$$\end{document}) and tris-(8-hydroxyquinoline) aluminum (AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document}) organometallics have been synthesized and incorporated into poly(methyl methacrylate) (PMMA) films for potential use in green-emitting OLED applications. The ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{ZnQ}}_{2}$$\end{document} and AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document} organometallics were prepared using an acid–base co-precipitation technique. Fourier-transform infrared spectroscopy and x-ray diffraction patterns were utilized to confirm the formation of ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{ZnQ}}_{2}$$\end{document}, AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document}, and ZnQ2–AlQ3 compounds. UV–Vis spectroscopy analysis revealed that PMMA/ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PMMA}/\mathrm{ZnQ}}_{2}$$\end{document}, PMMA/AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PMMA}/{\mathrm{AlQ}}_{3}$$\end{document}, and PMMA/(ZnQ2–AlQ3) composite solutions exhibited two primary transition bands in the range of approximately 330 nm and 380 nm, corresponding to the π–π* and n–π* transition bands, respectively. The average electrical conductivity of the PMMA/ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PMMA}/\mathrm{ZnQ}}_{2}$$\end{document} composite film was measured as 1.19 μS/cm, while the PMMA/AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PMMA}/{\mathrm{AlQ}}_{3}$$\end{document} composite film displayed a conductivity of 1.56 μS/cm, indicating that the intra-ligand charge-transfer of electrons in AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{AlQ}}_{3}$$\end{document} was higher than that in Znq_2. Additionally, photoluminescence (PL) emission peaks for the PMMA/ZnQ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PMMA}/\mathrm{ZnQ}}_{2}$$\end{document}, PMMA/AlQ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{PMMA}/{\mathrm{AlQ}}_{3}$$\end{document}, and PMMA/(ZnQ2–AlQ3) composite solutions were observed at wavelengths of 522 nm, 505 nm, and 509 nm, respectively, confirming their potential suitability for use in green-emitting OLEDs.
引用
收藏
页码:338 / 346
页数:8
相关论文
共 181 条
  • [1] Painuly D(2018)The Modification in the Photo–Physical Properties via Transformation of Synthetic Dihydrated Znq2 to Anhydrous (Znq2) 4 Tetramer by Sublimation Process Opt. Mater. 82 175-undefined
  • [2] Mogha NK(2022)Theoretical Investigation, Synthesis and Fabrication of Efficient Organometallic Light Emitting Diodes Based on Schiff Base Platinum Complexes: A QTAIM Study Surf. Interfaces 29 101717-undefined
  • [3] Singhal R(2021)Ultra-Broad-Band-Excitable Cu (I)-Based Organometallic Halide with Near-Unity Emission for Light-Emitting Diode Applications Chem. Mater. 33 4382-undefined
  • [4] Kandwal P(2020)Organic Light-Emitting Diodes: Pushing Toward the Limits and Beyond Adv. Mater. 32 1907539-undefined
  • [5] Masram DT(2020)Structural, Optical and Decay Properties of Zinc (II) 8-Hydroxyquinoline and Its Thin Film J. Electron. Mater. 49 6096-undefined
  • [6] Rabanal ME(2018)A Facile Synthesis and Optoelectronic Characterization of Znq2 and Alq3 Nano-complexes Appl. Phys. A 124 1-undefined
  • [7] Nagpure I(2020)Recent Advances in Organic Light-Emitting Diodes: Toward Smart Lighting and Displays Mater. Chem. Front. 4 788-undefined
  • [8] Fallah H(2020)Structural Analysis of Enhanced Performance Organic Light Emitting Diodes (OLEDs) Int. J. Comput. Netw. Commun. Secur. 8 80-undefined
  • [9] Safari R(2020)Triphenylamine-Imidazole-Based Luminophores for Deep-Blue Organic Light-Emitting Diodes: Experimental and Theoretical Investigations Mater. Adv. 1 666-undefined
  • [10] Zabolian H(2020)Efficient Non-doped Blue Fluorescent OLEDs Based on Bipolar Phenanthroimidazole-Triphenylamine Derivatives Opt. Mater. 101 109726-undefined