Maximum principle for controlled fractional Fokker-Planck equations

被引:0
作者
Qiuxi Wang
机构
[1] Jilin University,College of Mathematics
来源
Advances in Difference Equations | / 2015卷
关键词
-stable subordinator; maximum principle; stochastic optimal control problem; well-posedness; Riemann-Liouville derivative;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we obtain a maximum principle for controlled fractional Fokker-Planck equations. We prove the well-posedness of a stochastic differential equation driven by an α-stable process. We give some estimates of the solutions by fractional calculus. A linear-quadratic example is given at the end of the paper.
引用
收藏
相关论文
共 32 条
[1]  
Barkai E(2000)From continuous time random walks to the fractional Fokker-Planck equation Phys. Rev. E 61 132-138
[2]  
Metzler R(1993)Strange kinetics Nature 363 31-37
[3]  
Klafter J(2009)Stochastic representation of subdiffusion processes with time-dependent drift Stoch. Process. Appl. 119 3238-3252
[4]  
Shlesinger MF(2012)Fractional Fokker-Planck equation with space and time dependent drift and diffusion J. Stat. Phys. 149 619-628
[5]  
Zaslawsky GM(1973)Conjugate convex functions in optimal stochastic control J. Math. Anal. Appl. 44 384-404
[6]  
Klafter J(1978)An introductory approach to duality in optimal stochastic control SIAM Rev. 20 62-78
[7]  
Magdziarz M(1990)A general stochastic maximum principle for optimal control problems SIAM J. Control Optim. 28 966-979
[8]  
Lv L(1998)Stochastic linear quadratic regulators with indefinite control weight costs SIAM J. Control Optim. 36 1685-1702
[9]  
Qiu W(1993)Surface dynamics below the roughening transition J. Phys. 3 69-81
[10]  
Ren F(1993)Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow Phys. Rev. Lett. 71 3975-3978