The abelianization of inverse limits of groups

被引:0
作者
Ilan Barnea
Saharon Shelah
机构
[1] The Hebrew University of Jerusalem,Department of Mathematics
来源
Israel Journal of Mathematics | 2018年 / 227卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The abelianization is a functor from groups to abelian groups, which is left adjoint to the inclusion functor. Being a left adjoint, the abelianization functor commutes with all small colimits. In this paper we investigate the relation between the abelianization of a limit of groups and the limit of their abelianizations. We show that if T is a countable directed poset and G: T → Grp is a diagram of groups that satisfies the Mittag-Leffler condition, then the natural map Ab(limt∈TGt)→limt∈TAb(Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ab(\mathop {lim}\limits_{t \in T} {G_t}) \to \mathop {lim}\limits_{t \in T} Ab({G_t})$$\end{document} is surjective, and its kernel is a cotorsion group. In the special case of a countable product of groups, we show that the Ulm length of the kernel does not exceed ℵ1.
引用
收藏
页码:455 / 483
页数:28
相关论文
共 3 条
  • [1] Harrison D. K.(1959)Infinite abelian groups and homological methods Annals of Mathematics 69 366-391
  • [2] Warfield R. B.(1979)On the values of the functor lim1 Archiv der Mathematik 33 430-436
  • [3] Huber M.(undefined)undefined undefined undefined undefined-undefined