Deep learning-driven adaptive optics for single-molecule localization microscopy

被引:0
|
作者
Peiyi Zhang
Donghan Ma
Xi Cheng
Andy P. Tsai
Yu Tang
Hao-Cheng Gao
Li Fang
Cheng Bi
Gary E. Landreth
Alexander A. Chubykin
Fang Huang
机构
[1] Purdue University,Weldon School of Biomedical Engineering
[2] Purdue University,Davidson School of Chemical Engineering
[3] Purdue University,Department of Biological Sciences
[4] Purdue University,Purdue Institute for Integrative Neuroscience
[5] Indiana University School of Medicine,Stark Neurosciences Research Institute
[6] Indiana University School of Medicine,Department of Anatomy, Cell Biology and Physiology
[7] Purdue University,Purdue Institute of Inflammation, Immunology and Infectious Disease
来源
Nature Methods | 2023年 / 20卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The inhomogeneous refractive indices of biological tissues blur and distort single-molecule emission patterns generating image artifacts and decreasing the achievable resolution of single-molecule localization microscopy (SMLM). Conventional sensorless adaptive optics methods rely on iterative mirror changes and image-quality metrics. However, these metrics result in inconsistent metric responses and thus fundamentally limit their efficacy for aberration correction in tissues. To bypass iterative trial-then-evaluate processes, we developed deep learning-driven adaptive optics for SMLM to allow direct inference of wavefront distortion and near real-time compensation. Our trained deep neural network monitors the individual emission patterns from single-molecule experiments, infers their shared wavefront distortion, feeds the estimates through a dynamic filter and drives a deformable mirror to compensate sample-induced aberrations. We demonstrated that our method simultaneously estimates and compensates 28 wavefront deformation shapes and improves the resolution and fidelity of three-dimensional SMLM through >130-µm-thick brain tissue specimens.
引用
收藏
页码:1748 / 1758
页数:10
相关论文
共 50 条
  • [21] Single-Molecule Localization Microscopy using mCherry
    Winterflood, Christian M.
    Ewers, Helge
    CHEMPHYSCHEM, 2014, 15 (16) : 3447 - 3451
  • [22] Single-molecule localization microscopy goes quantitative
    Scalisi, Silvia
    Pisignano, Dario
    Zanacchi, Francesca Cella
    MICROSCOPY RESEARCH AND TECHNIQUE, 2023, 86 (04) : 494 - 504
  • [23] Single-molecule localization microscopy analysis with ImageJ
    van de Linde, Sebastian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (20)
  • [24] Correlation analysis in single-molecule localization microscopy
    Christian Schnell
    Nature Methods, 2018, 15 : 310 - 311
  • [25] Progress in quantitative single-molecule localization microscopy
    H. Deschout
    A. Shivanandan
    P. Annibale
    M. Scarselli
    A. Radenovic
    Histochemistry and Cell Biology, 2014, 142 : 5 - 17
  • [26] Progress in quantitative single-molecule localization microscopy
    Deschout, H.
    Shivanandan, A.
    Annibale, P.
    Scarselli, M.
    Radenovic, A.
    HISTOCHEMISTRY AND CELL BIOLOGY, 2014, 142 (01) : 5 - 17
  • [27] CORRELATION ANALYSIS IN SINGLE-MOLECULE LOCALIZATION MICROSCOPY
    Schnell, Christian
    NATURE METHODS, 2018, 15 (05) : 310 - +
  • [28] Eight years of single-molecule localization microscopy
    Klein, Teresa
    Proppert, Sven
    Sauer, Markus
    HISTOCHEMISTRY AND CELL BIOLOGY, 2014, 141 (06) : 561 - 575
  • [29] Single-molecule localization microscopy: where next?
    Sauer, M.
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2018, 50 (06) : 499 - 499
  • [30] Single-molecule localization microscopy with microbial samples
    Feddersen H.
    Shin J.Y.
    Bramkamp M.
    BIOspektrum, 2019, 25 (2) : 170 - 173