POLYNOMIALS FOR SYMMETRIC ORBIT CLOSURES IN THE FLAG VARIETY

被引:0
作者
Wyser B. [1 ]
Yong A. [1 ]
机构
[1] Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, 61801, IL
基金
美国国家科学基金会;
关键词
Orbit Closure; Weak Order; Equivariant Cohomology; Schubert Variety; Symmetric Pair;
D O I
10.1007/s00031-016-9381-x
中图分类号
学科分类号
摘要
In [WY] we introduced polynomial representatives of cohomology classes of orbit closures in the flag variety, for the symmetric pair (GLp+q, GLp × GLq). We present analogous results for the remaining symmetric pairs of the form (GLn, K), i.e., (GLn, On) and (GL2n, Sp2n). We establish “well-definedness” of certain representatives from [Wy1]. It is also shown that the representatives have the combinatorial properties of nonnegativity and stability. Moreover, we give some extensions to equivariant K-theory. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:267 / 290
页数:23
相关论文
共 18 条
  • [1] Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogeènes de groupes de Lie compacts, Ann. Math., 57, pp. 115-207, (1953)
  • [2] Brion M., The behaviour at infinity of the Bruhat decomposition, Comment. Math. Helv., 73, 1, pp. 137-174, (1998)
  • [3] Brion M., Rational smoothness and fixed points of torus actions, Transform. Groups, 7, 1, pp. 127-156, (1999)
  • [4] Brion M., On orbit closures of spherical subgroups in flag varieties, Comment. Math. Helv., 76, 2, pp. 263-299, (2001)
  • [5] Brion M., Positivity in the Grothendieck group of complex flag varieties, J. Algebra, 258, pp. 137-159, (2002)
  • [6] Chriss N., Ginzburg V., Representation Theory and Complex Geometry, (1997)
  • [7] Hartshorne R., Geometry A., Russian transl.: Р. Хартсхорн, Алгебраическая геометрия, Мир, М, 1981, (1977)
  • [8] Knutson A., Miller E., Gröbner geometry of Schubert polynomials, Annals of Math., 161, pp. 1245-1318, (2005)
  • [9] Kostant B., Kumar S., T-equivariant K-theory of generalized flag varieties, J. Diff. Geom., 32, 2, pp. 549-603, (1990)
  • [10] Lascoux A., Schutzenberger M.-P., Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., 295, pp. 629-633, (1982)