On generalizations of fuzzy quasi-prime ideals in LA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}{{\mathcal {A}}}$$\end{document}-semigroups

被引:0
作者
Pairote Yiarayong
机构
[1] Pibulsongkram Rajabhat University,Department of Mathematics, Faculty of Science and Technology
关键词
(; )-Fuzzy ; -subsemigroup; (; )-Fuzzy left ideal; (; )-Fuzzy completely prime subset; (; )-Fuzzy quasi-prime ideal; -Fuzzy subset (; -fuzzy subset);
D O I
10.1007/s00500-019-04043-x
中图分类号
学科分类号
摘要
In this paper, we extend the concept of fuzzy subsets given by Zadeh (Inf Control 8:338–353, 1965) to the context of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\alpha }$$\end{document}-fuzzy and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\alpha }$$\end{document}-fuzzy subsets. The aim of this paper is to investigate the concept of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\alpha }$$\end{document}-fuzzy and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{\alpha }$$\end{document}-fuzzy subsets in LA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}{{\mathcal {A}}}$$\end{document}-semigroups. Some characterizations of (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy LA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}{{\mathcal {A}}}$$\end{document}-subsemigroup, (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy left, (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy completely prime and (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy quasi-prime ideals are obtained. Moreover, we investigate relationships between (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy completely prime and (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy quasi-prime ideals of LA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {L}}}{{\mathcal {A}}}$$\end{document}-semigroups. Finally, we obtain sufficient conditions of an (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy quasi-prime ideal in order to be an (α,β)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \beta )$$\end{document}-fuzzy completely prime subset.
引用
收藏
页码:2125 / 2137
页数:12
相关论文
共 75 条
[1]  
Abdullah S(2014)-semigroups characterized by the properties of interval valued J Appl Math Inf 32 405-426
[2]  
Aslam S(2016)-fuzzy ideals Quasigroups Relat Syst 24 1-6
[3]  
Amin N(2017)On generalized associativity in groupoids Afr Mat 28 171-187
[4]  
Akhtar R(2017)On fuzzy soft intra-regular Abel–Grassmann’s groupoids J Intell Fuzzy Syst 34 2401-2416
[5]  
Ali A(2014)Triangular cubic linguistic hesitant fuzzy aggregation operators and their application in group decision making Afr Mat 25 501-518
[6]  
Khan M(2017)Characterization of regular J Intell Fuzzy Syst 33 3323-3337
[7]  
Shi FG(2018)-semigroups by interval-valued Punjab Univ J Math 50 23-34
[8]  
Amin F(2018)-fuzzy ideals J Intell Fuzzy Syst 35 2485-2499
[9]  
Fahmi A(2018)Aggregation operators on triangular cubic fuzzy numbers and its application to multi-criteria decision making problems Soft Comput 49 2385-2397
[10]  
Abdullah S(2018)Weighted average rating (war) method for solving group decision making problem using triangular cubic fuzzy hybrid aggregation (tcfha) Int J Syst Sci 24 577-587