On the Existence of Positive Eigenvalues for Semilinear Elliptic Equation on all of Rd

被引:0
作者
N. Belhaj Rhouma
M. Mosbah
机构
[1] Institut préparatoire aux Etudes d'ingénieurs de Tunis,
[2] Faculté des Sciences de Bizerte,undefined
来源
Potential Analysis | 2004年 / 21卷
关键词
eigenvalue; eigenfunction; Green's function; Kato class; superharmonic function; subsolution; supersolution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a problem of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ \begin{gathered} \Delta {\kern 1pt} u\left( x \right) + {\lambda g}\left( x \right)f\left( {u\left( x \right)} \right) = 0\quad x \in \mathbb{R}^d , \hfill \\ \lim _{\left\| x \right\| \to \infty } u\left( x \right) = 0, \hfill \\ \end{gathered} \right.$$ \end{document} where d≥3, f is a positive locally Lipschitz bounded function and g is assumed to change sign. We give some conditions of integral type to get the existence of positive solutions for λ large enough.
引用
收藏
页码:137 / 150
页数:13
相关论文
共 20 条
[1]  
Aizenman M.(1982)Brownian motion and Harnack inequality for Schrödinger operator Comm. Pure Appl. Math. 35 209-273
[2]  
Simon B.(1987)Continuous solutions of the generalized Schrödinger equation and perturbation of harmonic spaces Exposition. Math. 5 97-135
[3]  
Boukricha A.(2002)On the existence of positive eigenvalues for linear and nonlinear equations with indefinite weight Appl. Anal. 81 615-625
[4]  
Hansen W.(1996)Global bifurcation results for a semilinear elliptic equation on all ℝ Duke Math. J. 85 77-94
[5]  
Hueber H.(1998)On the construction of super and subsolutions for elliptic equations on all of ℝ Nonlinear Anal. 32 87-95
[6]  
Belhaj Rhouma N.(1991)On the bifurcation of radially symmetric steady-state solutions arising in population genetics SIAM J. Math. Anal. 22 400-413
[7]  
Mosbah M.(1975)A selection migration model in population genetics J. Math. Biol. 2 219-233
[8]  
Brown K.J.(1997)Existence and bifurcation of positive solutions of a semilinear elliptic problem on ℝ Nonlinear Differential Equations Appl. 4 341-357
[9]  
Stavrakakis N.(1988)Eigenvalues in potential theory J. Differential Equations 73 133-152
[10]  
Brown K.J.(1988)On conformal scalar curvature equations in ℝ Duke Math. J. 57 895-924