Cyclic codes over M4(F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2$$\end{document})

被引:0
作者
Joydeb Pal
Sanjit Bhowmick
Satya Bagchi
机构
[1] National Institute of Technology Durgapur,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2019年 / 60卷
关键词
Matrix ring; Modules; Cyclic codes; Quaternary codes; 94B05; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, keeping the huge research prospective of the study in mind, we consider the non-commutative ring M4(F2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2)$$\end{document}, the set of all 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \times 4$$\end{document} matrices over the field F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_2$$\end{document} and confirm that this ring is isomorphic with the ring F16+uF16+u2F16+u3F16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{16}+u {\mathbb {F}}_{16}+u^2 {\mathbb {F}}_{16}+u^3{\mathbb {F}}_{16}$$\end{document}, where u4=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^4=0$$\end{document}. Besides, we develop the structure of cyclic codes and their generators over the ring. Also, making use of Gray map from M4(F2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2)$$\end{document} to F164\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{16}^4$$\end{document}, we infer that the image of a cyclic code is a linear code. Finally, our findings are authenticated by suitable non-trivial examples.
引用
收藏
页码:749 / 756
页数:7
相关论文
共 29 条
[11]  
López-Permouth SR(2010)Cyclic codes and quadratic residue codes over Des. Codes Cryptogr. 54 61-81
[12]  
Hammons AR(2010)Cyclic codes over a non-commutative finite chain ring IEEE Trans. Inf. Theory 56 1680-1684
[13]  
Kumar PV(undefined)Linear codes over undefined undefined undefined-undefined
[14]  
Calderbank AR(undefined)Some results on cyclic codes over undefined undefined undefined-undefined
[15]  
Sloane NJA(undefined)undefined undefined undefined undefined-undefined
[16]  
Solé P(undefined)undefined undefined undefined undefined-undefined
[17]  
Luo R(undefined)undefined undefined undefined undefined-undefined
[18]  
Udaya P(undefined)undefined undefined undefined undefined-undefined
[19]  
Oggier F(undefined)undefined undefined undefined undefined-undefined
[20]  
Solé P(undefined)undefined undefined undefined undefined-undefined