Cyclic codes over M4(F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2$$\end{document})

被引:0
作者
Joydeb Pal
Sanjit Bhowmick
Satya Bagchi
机构
[1] National Institute of Technology Durgapur,Department of Mathematics
来源
Journal of Applied Mathematics and Computing | 2019年 / 60卷
关键词
Matrix ring; Modules; Cyclic codes; Quaternary codes; 94B05; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, keeping the huge research prospective of the study in mind, we consider the non-commutative ring M4(F2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2)$$\end{document}, the set of all 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4 \times 4$$\end{document} matrices over the field F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_2$$\end{document} and confirm that this ring is isomorphic with the ring F16+uF16+u2F16+u3F16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{16}+u {\mathbb {F}}_{16}+u^2 {\mathbb {F}}_{16}+u^3{\mathbb {F}}_{16}$$\end{document}, where u4=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^4=0$$\end{document}. Besides, we develop the structure of cyclic codes and their generators over the ring. Also, making use of Gray map from M4(F2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}_4({\mathbb {F}}_2)$$\end{document} to F164\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{16}^4$$\end{document}, we infer that the image of a cyclic code is a linear code. Finally, our findings are authenticated by suitable non-trivial examples.
引用
收藏
页码:749 / 756
页数:7
相关论文
共 29 条
[1]  
Abualrub T(2007)Cyclic codes over the rings Des. Codes Cryptogr. 42 273-287
[2]  
Siap I(2013) and J. Frankl. Inst. 350 2837-2847
[3]  
Alahmadi A(1997)Cyclic codes over J. Comb. Theory A 78 92-119
[4]  
Sboui H(1999)Applications of coding theory to the construction of modular lattices IEEE Trans. Inf. Theory 45 1250-1255
[5]  
Solé P(2004)Cyclic codes and self-dual codes over IEEE Trans. Inf. Theory 50 1728-1744
[6]  
Yemen O(1994)Cyclic and negacyclic codes over finite chain rings IEEE Trans. Inf. Theory 40 301-319
[7]  
Bachoc C(2018)The Cryptogr. Commun. 10 1109-1117
[8]  
Bonnecaze A(2012)-linearity of Kerdock, preparata, goethals and related codes IEEE Trans. Inf. Theory 58 734-746
[9]  
Udaya P(1996)Cyclic codes over IEEE Trans. Inf. Theory 42 1594-1600
[10]  
Dinh HQ(2018)Codes over matrix rings for space-time coded modulations Cryptogr. Commun. 10 519-530