Zeros of the combination of the Eisenstein series for Γ0+(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^+(2)$$\end{document}

被引:0
作者
SoYoung Choi
Bo-Hae Im
机构
[1] Gyeongsang National University,Department of Mathematics Education and RINS
[2] KAIST,Department of Mathematical Sciences
关键词
Eisenstein series; Hecke group; Fricke group; 11F11; 11F03;
D O I
10.1007/s11139-024-00836-3
中图分类号
学科分类号
摘要
For even integers k≥ℓ≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge \ell \ge 4$$\end{document}, we consider the modular forms Ek+Eℓ++Ek+ℓ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_k^+E_\ell ^++E_{k+\ell }^+$$\end{document} for the Fricke group Γ0+(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^+(2)$$\end{document}, where Ek+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_k^+$$\end{document} is the Eisenstein series of weight k for Γ0+(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^+(2)$$\end{document}, and we prove that if 26630≤ℓ<k≤77ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$26630\le \ell < k \le 77\ell $$\end{document} or k=ℓ≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\ell \ge 10$$\end{document}, then all of their zeros in the fundamental domain F+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}^+$$\end{document} for Γ0+(2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _0^+(2)$$\end{document} lie on the arc boundary of F+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {F}^+$$\end{document}.
引用
收藏
页码:475 / 488
页数:13
相关论文
共 17 条
  • [1] Choi S(2016)On the zeros of certian weakly holomorphic modular forms for J. Number Theory 166 298-323
  • [2] Im B-H(2021)The number of zeros of certain combinations of the Eisenstein series for J. Number Theory 223 101-131
  • [3] Choi S(2008)On the zeros and coefficients of certain weakly holomorphic modular forms Pure Appl. Math. Q. 4 1327-1340
  • [4] Im B-H(2006)On the zeros of certain cusp forms Math. Proc. Camb. Philos. Soc. 141 191-195
  • [5] Duke W(2019)Zeros of certain combinations of Eisenstein series of weight J. Number Theory 198 124-138
  • [6] Jenkins P(2007), and J. Math. Soc. Japan 59 693-706
  • [7] Gun S(1970)On the zeros of Eisenstein series of Bull. Lond. Math. Soc. 2 169-170
  • [8] Klangwang J(2017) and Mathematika 63 666-695
  • [9] Miezaki T(1963)On the zeros of Eisenstein series Math. Nachrichten 26 381-383
  • [10] Nozaki H(undefined)Zeros of certain combinations of Eisenstein Series undefined undefined undefined-undefined