Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations

被引:13
作者
Liu, Mingfeng [1 ,2 ]
Wang, Jiantao [1 ,2 ]
Hu, Junwei [3 ]
Liu, Peitao [1 ]
Niu, Haiyang [3 ]
Yan, Xuexi [1 ]
Li, Jiangxu [1 ]
Yan, Haile [4 ]
Yang, Bo [4 ]
Sun, Yan [1 ]
Chen, Chunlin [1 ]
Kresse, Georg [5 ]
Zuo, Liang [4 ]
Chen, Xing-Qiu [1 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[3] Northwestern Polytech Univ, Int Ctr Mat Discovery, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[4] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Peoples R China
[5] Univ Vienna, Fac Phys, Ctr Computat Mat Sci, Kolingasse 14-16, A-1090 Vienna, Austria
基金
中国国家自然科学基金; 奥地利科学基金会;
关键词
TRANSITION; DIAMOND;
D O I
10.1038/s41467-024-47422-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from beta- to lambda-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the beta-lambda phase transformation initiates with the formation of two-dimensional nuclei in the a b-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the beta-lambda transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.
引用
收藏
页数:10
相关论文
共 88 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATION
[2]   Nucleating a Different Coordination in a Crystal under Pressure: A Study of the B1-B2 Transition in NaCl by Metadynamics [J].
Badin, Matej ;
Martonak, Roman .
PHYSICAL REVIEW LETTERS, 2021, 127 (10)
[3]   Metadynamics [J].
Barducci, Alessandro ;
Bonomi, Massimiliano ;
Parrinello, Michele .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (05) :826-843
[4]   Well-tempered metadynamics: A smoothly converging and tunable free-energy method [J].
Barducci, Alessandro ;
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[5]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[6]  
Batzner S, 2022, NAT COMMUN, V13, DOI [10.1038/s41467-022-29939-5, 10.1212/12121]
[7]   Four Generations of High-Dimensional Neural Network Potentials [J].
Behler, Joerg .
CHEMICAL REVIEWS, 2021, 121 (16) :10037-10072
[8]   Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential [J].
Behler, Joerg ;
Martonak, Roman ;
Donadio, Davide ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)
[9]   Reconstructing the Equilibrium Boltzmann Distribution from Well-Tempered Metadynamics [J].
Bonomi, M. ;
Barducci, A. ;
Parrinello, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (11) :1615-1621
[10]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)