Stability Inequalities for Projections of Convex Bodies

被引:0
作者
Alexander Koldobsky
机构
[1] University of Missouri,Department of Mathematics
来源
Discrete & Computational Geometry | 2017年 / 57卷
关键词
Convex body; Projection; Fourier transform; Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
The projection function PK\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_K$$\end{document} of an origin-symmetric convex body K in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} is defined by PK(ξ)=|K|ξ⊥|,ξ∈Sn-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_K(\xi )=|K\vert {\xi ^\bot }|,\ \xi \in S^{n-1},$$\end{document} where K|ξ⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\vert {\xi ^\bot }$$\end{document} is the projection of K to the central hyperplane ξ⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi ^\bot $$\end{document} perpendicular to ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}, and |K| stands for volume of proper dimension. We prove several stability and separation results for the projection function. For example, if D is a projection body in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} which is in isotropic position up to a dilation, and K is any origin-symmetric convex body in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^n$$\end{document} such that that there exists ξ∈Sn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi \in S^{n-1}$$\end{document} with PK(ξ)>PD(ξ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_K(\xi )>P_D(\xi ),$$\end{document} then maxξ∈Sn-1(PK(ξ)-PD(ξ))≥clog2n(|K|n-1n-|D|n-1n),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \max _{\xi \in S^{n-1}} (P_K(\xi )-P_D(\xi )) \ge \frac{c}{\log ^2n} \big (|K|^{\frac{n-1}{n}} -|D|^{\frac{n-1}{n}}\big ), \end{aligned}$$\end{document}where c is an absolute constant. As a consequence, we prove a hyperplane inequality S(D)≤Clog2nmaxξ∈Sn-1S(D|ξ⊥)|D|1n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} S(D) \le \ C \log ^2n \max _{\xi \in S^{n-1}} S(D\vert \xi ^\bot )\ |D|^{\frac{1}{n}}, \end{aligned}$$\end{document}where D is a projection body in isotropic position, up to a dilation, S(D) is the surface area of D,S(D|ξ⊥)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D,S(D\vert \xi ^\bot )$$\end{document} is the surface area of the body D|ξ⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\vert \xi ^\bot $$\end{document} in Rn-1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^{n-1},$$\end{document} and C is an absolute constant. The proofs are based on the Fourier analytic approach to projections developed in [12].
引用
收藏
页码:152 / 163
页数:11
相关论文
共 50 条
  • [31] On the quermassintegrals of convex bodies
    Chang Jian Zhao
    Wing Sum Cheung
    Journal of Inequalities and Applications, 2013
  • [32] Fiber Convex Bodies
    Mathis, Leo
    Meroni, Chiara
    DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (04) : 1451 - 1475
  • [33] On the girth of convex bodies
    H. Groemer
    Archiv der Mathematik, 1997, 69 : 75 - 81
  • [34] Fiber Convex Bodies
    Léo Mathis
    Chiara Meroni
    Discrete & Computational Geometry, 2023, 70 : 1451 - 1475
  • [35] On asphericity of convex bodies
    Dudov S.I.
    Meshcheryakova E.A.
    Russian Mathematics, 2015, 59 (2) : 36 - 47
  • [36] On the quermassintegrals of convex bodies
    Zhao, Chang Jian
    Cheung, Wing Sum
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [37] Mean projection and section radii of convex bodies
    Abardia-Evequoz, J.
    Hernandez Cifre, M. A.
    Gomez, E. Saorin
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (01) : 89 - 103
  • [38] Mean projection and section radii of convex bodies
    J. Abardia-Evéquoz
    M. A. Hernández Cifre
    E. Saorín Gómez
    Acta Mathematica Hungarica, 2018, 155 : 89 - 103
  • [39] Approximation of Convex Bodies by Centrally Symmetric Bodies
    Marek Lassak
    Geometriae Dedicata, 1998, 72 : 63 - 68
  • [40] Approximation of convex bodies by centrally symmetric bodies
    Lassak, M
    GEOMETRIAE DEDICATA, 1998, 72 (01) : 63 - 68