On the Kegel–Wielandt \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-Problem

被引:0
作者
S. F. Kamornikov
V. N. Tyutyanov
机构
[1] Francisk Skoryna Gomel State University,
[2] International University “MITSO”,undefined
关键词
finite group; -subnormal subgroup; Hall subgroup; complete Hall set; Ree group;
D O I
10.1134/S0001434621030263
中图分类号
学科分类号
摘要
引用
收藏
页码:580 / 584
页数:4
相关论文
共 18 条
[1]  
Kegel O. H.(1962)Sylow-Gruppen und Subnormalteiler endlicher Gruppen Math. Z. 78 205-221
[2]  
Wielandt H.(1980)Zusammengesetzte Gruppen: Hölders Programm heute The Santa Cruz Conference on Finite Groups 37 161-173
[3]  
Kleidman P. B.(1991)A proof of the Kegel–Wielandt conjecture on subnormal subgroups Ann. of Math. (2) 133 369-428
[4]  
Guralnick R.(1993)Sylow Proc. London Math. Soc. (3) 66 129-151
[5]  
Kleidman P. B.(1997)-subgroups and subnormal subgroups of finite groups Arch. Math. (Basel) 68 1-6
[6]  
Lyons R.(2015)Finite groups in which all J. Algebra 436 1-16
[7]  
Ezquerro L. M.(2015)-subnormal subgroups form a lattice Commun. Math. Stat. 4 281-309
[8]  
Gomez M.(2020)On Sib. Math. J. 61 266-270
[9]  
Skiba A. N.(2020)-subnormal and Ukr. Math. J. 72 935-941
[10]  
Skiba A. N.(1985)-permutable subgroups of finite groups Algebra Logic 24 16-26