Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular

被引:0
|
作者
Victor Fabian Morales-Delgado
José Francisco Gómez-Aguilar
Huitzilin Yépez-Martínez
Dumitru Baleanu
Ricardo Fabricio Escobar-Jimenez
Victor Hugo Olivares-Peregrino
机构
[1] Universidad Autónoma de Guerrero,Unidad Académica de Matemáticas
[2] Tecnológico Nacional de México,CONACYT
[3] Universidad Autónoma de la Ciudad de México,Centro Nacional de Investigación y Desarrollo Tecnológico
[4] Cankaya University,Department of Mathematics and Computer Sciences, Faculty of Art and Sciences
[5] Institute of Space Sciences,Centro Nacional de Investigación y Desarrollo Tecnológico
[6] Tecnológico Nacional de México,undefined
来源
Advances in Difference Equations | / 2016卷
关键词
fractional calculus; fractional differential equations; Caputo fractional operator; Caputo-Fabrizio fractional operator; homotopy analysis method; approximate solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present an analysis based on a combination of the Laplace transform and homotopy methods in order to provide a new analytical approximated solutions of the fractional partial differential equations (FPDEs) in the Liouville-Caputo and Caputo-Fabrizio sense. So, a general scheme to find the approximated solutions of the FPDE is formulated. The effectiveness of this method is demonstrated by comparing exact solutions of the fractional equations proposed with the solutions here obtained.
引用
收藏
相关论文
共 50 条
  • [1] Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular
    Fabian Morales-Delgado, Victor
    Francisco Gomez-Aguilar, Jose
    Yepez-Martinez, Huitzilin
    Baleanu, Dumitru
    Fabricio Escobar-Jimenez, Ricardo
    Hugo Olivares-Peregrino, Victor
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative
    Yang, Ai-Min
    Li, Jie
    Srivastava, H. M.
    Xie, Gong-Nan
    Yang, Xiao-Jun
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [3] Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method
    Dehghan, Mehdi
    Manafian, Jalil
    Saadatmandi, Abbas
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) : 448 - 479
  • [4] The Solution of the Linear Fractional Partial Differential Equations Using the Homotopy Analysis Method
    Dehghan, Mehdi
    Manafian, Jalil
    Saadatmandi, Abbas
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (11): : 935 - 949
  • [5] Homotopy analysis method for solving fractional hyperbolic partial differential equations
    Das, S.
    Gupta, P. K.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) : 578 - 588
  • [7] Solving a System of Linear and Nonlinear Fractional Partial Differential Equations Using Homotopy Perturbation Method
    Matinfar, M.
    Saeidy, M.
    Eslami, M.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (7-8) : 471 - 478
  • [8] Solving a system of nonlinear fractional partial differential equations using homotopy analysis method
    Jafari, H.
    Seifi, S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) : 1962 - 1969
  • [9] Fractional Shehu Transform for Solving Fractional Differential Equations without Singular Kernel
    Wiwatwanich, Araya
    Poltem, Duangkamol
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1341 - 1350
  • [10] Applying Discrete Homotopy Analysis Method for Solving Fractional Partial Differential Equations
    Ozpinar, Figen
    ENTROPY, 2018, 20 (05)