Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space

被引:1
作者
Nick Sheridan
机构
[1] Princeton University and the Institute for Advanced Study,
来源
Inventiones mathematicae | 2015年 / 199卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove Homological Mirror Symmetry for a smooth d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional Calabi–Yau hypersurface in projective space, for any d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 3$$\end{document} (for example, d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document} is the quintic threefold). The main techniques involved in the proof are: the construction of an immersed Lagrangian sphere in the ‘d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-dimensional pair of pants’; the introduction of the ‘relative Fukaya category’, and an understanding of its grading structure; a description of the behaviour of this category with respect to branched covers (via an ‘orbifold’ Fukaya category); a Morse–Bott model for the relative Fukaya category that allows one to make explicit computations; and the introduction of certain graded categories of matrix factorizations mirror to the relative Fukaya category.
引用
收藏
页码:1 / 186
页数:185
相关论文
共 60 条
  • [1] Abouzaid M(2010)Homological mirror symmetry for the four-torus Duke Math. J. 152 373-440
  • [2] Smith I(1967)Characteristic class entering in quantization conditions Funkcional. Anal. i Priložen 1 1-14
  • [3] Arnold VI(2000)Symplectic 4-manifolds as branched coverings of Invent. Math. 139 551-602
  • [4] Auroux D(2012)Orlov spectra: bounds and gaps Invent. Math. 189 359-430
  • [5] Ballard M(1978)Coherent sheaves on Funct. Anal. Appl. 12 68-69
  • [6] Favero D(1991) and problems of linear algebra Nucl. Phys. B 359 21-74
  • [7] Katzarkov L(2007)A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory J. Symplectic Geom. 5 281-356
  • [8] Beilinson AA(2006)Symplectic hypersurfaces and transversality in Gromov–Witten theory Electron. Res. Announc. Am. Math. Soc. 12 1-12
  • [9] Candelas P(2011)Cluster homology: an overview of the construction and results Duke Math. J. 159 223-274
  • [10] de la Ossa X(2012)Compact generators in categories of matrix factorizations Adv. Math. 2 493-530